As Time Goes By: Comprehensive Tagging of Textual Phrases with Temporal Scopes

Temporal expressions (TempEx's for short) are increasingly important in search, question answering, information extraction, and more. Techniques for identifying and normalizing explicit temporal expressions work well, but are not designed for and cannot cope with textual phrases that denote named events, such as "Clinton's term as secretary of state". This paper addresses the problem of detecting such temponyms, inferring their temporal scopes, and mapping them to events in a knowledge base if present there. We present methods for this kind of temponym resolution, using an entity- and TempEx-oriented document model and the Yago knowledge base for distant supervision. We develop a family of Integer Linear Programs for jointly inferring temponym mappings to the timeline and knowledge base. This enriches the document representation and also extends the knowledge base by obtaining new alias names for events. Experiments with three different corpora demonstrate the viability of our methods.

[1]  Hanan Samet,et al.  Adaptive context features for toponym resolution in streaming news , 2012, SIGIR '12.

[2]  Tom M. Mitchell,et al.  Coupled temporal scoping of relational facts , 2012, WSDM '12.

[3]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[4]  Joemon M. Jose,et al.  Wikipedia as a time machine , 2014, WWW.

[5]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[6]  C. Fellbaum An Electronic Lexical Database , 1998 .

[7]  Gerhard Weikum,et al.  Harvesting facts from textual web sources by constrained label propagation , 2011, CIKM '11.

[8]  Luke S. Zettlemoyer,et al.  Context-dependent Semantic Parsing for Time Expressions , 2014, ACL.

[9]  Michael Gertz,et al.  Multilingual and cross-domain temporal tagging , 2012, Language Resources and Evaluation.

[10]  KoudasNick,et al.  Dense subgraph maintenance under streaming edge weight updates for real-time story identification , 2012, VLDB 2012.

[11]  Gerhard Weikum,et al.  Coupling Label Propagation and Constraints for Temporal Fact Extraction , 2012, ACL.

[12]  山田 育矢 Entity linking with a knowledge base(審査報告) , 2016 .

[13]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[14]  Massimiliano Ciaramita,et al.  A framework for benchmarking entity-annotation systems , 2013, WWW.

[15]  Fuchun Peng,et al.  Improving search relevance for implicitly temporal queries , 2009, SIGIR.

[16]  James Pustejovsky,et al.  The TARSQI Toolkit , 2012, LREC.

[17]  Gerhard Weikum,et al.  Extraction of temporal facts and events from Wikipedia , 2012, TempWeb '12.

[18]  James H. Martin,et al.  Identification of Event Mentions and their Semantic Class , 2006, EMNLP.

[19]  Divesh Srivastava,et al.  Dense subgraph maintenance under streaming edge weight updates for real-time story identification , 2012, The VLDB Journal.

[20]  Cong Yu,et al.  Dynamic relationship and event discovery , 2011, WSDM '11.

[21]  Dan Roth,et al.  Joint Inference for Event Timeline Construction , 2012, EMNLP.

[22]  Klaus Berberich,et al.  Identifying Time Intervals of Interest to Queries , 2014, CIKM.

[23]  Gerhard Weikum,et al.  Robust Disambiguation of Named Entities in Text , 2011, EMNLP.

[24]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[25]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[26]  Daniel S. Weld,et al.  Temporal Information Extraction , 2010, AAAI.

[27]  Michael Gertz,et al.  Temporal Information Retrieval: Challenges and Opportunities , 2011, TWAW.

[28]  Jochen L. Leidner Toponym resolution in text , 2007 .

[29]  Rui Yan,et al.  Timeline generation with social attention , 2013, SIGIR.

[30]  Dafna Shahaf,et al.  Connecting the dots between news articles , 2010, IJCAI.

[31]  Dan Roth,et al.  Extraction of events and temporal expressions from clinical narratives , 2013, J. Biomed. Informatics.

[32]  Zornitsa Kozareva,et al.  Learning Temporal Information for States and Events , 2011, 2011 IEEE Fifth International Conference on Semantic Computing.

[33]  Jiawei Han,et al.  Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions , 2015, IEEE Transactions on Knowledge and Data Engineering.

[34]  Omar Alonso,et al.  Kondenzer: Exploration and visualization of archived social media , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[35]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[36]  Gerhard Weikum,et al.  PATTY: A Taxonomy of Relational Patterns with Semantic Types , 2012, EMNLP.

[37]  W. Bruce Croft,et al.  Time-based language models , 2003, CIKM '03.

[38]  Gerhard Weikum,et al.  YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.

[39]  Gerhard Weikum,et al.  A Language Modeling Approach for Temporal Information Needs , 2010, ECIR.

[40]  Jochen L. Leidner Toponym resolution in text: annotation, evaluation and applications of spatial grounding , 2007, SIGF.

[41]  James Pustejovsky,et al.  ISO-TimeML: An International Standard for Semantic Annotation , 2010, LREC.

[42]  Yan Zhang,et al.  Evolutionary timeline summarization: a balanced optimization framework via iterative substitution , 2011, SIGIR.

[43]  Wolfgang Nejdl,et al.  Learning to Detect Event-Related Queries for Web Search , 2015, WWW.

[44]  Ricardo Baeza-Yates,et al.  Enhancing Document Snippets Using Temporal Information , 2011, SPIRE.

[45]  Robert Dale,et al.  WikiWars: A New Corpus for Research on Temporal Expressions , 2010, EMNLP.

[46]  Jakub Piskorski,et al.  Exploring the Usefulness of Cross-lingual Information Fusion for Refining Real-time News Event Extraction: A Preliminary Study , 2011, RANLP.

[47]  Pu-Jen Cheng,et al.  Learning-based time-sensitive re-ranking for web search , 2012, SIGIR '12.