Estimation of Illuminants From Projections on the Planckian Locus

This paper introduces a new approach for the automatic estimation of illuminants in a digital color image. The method relies on two assumptions. First, the image is supposed to contain at least a small set of achromatic pixels. The second assumption is physical and concerns the set of possible illuminants, assumed to be well approximated by black body radiators. The proposed scheme is based on a projection of selected pixels on the Planckian locus in a well chosen chromaticity space, followed by a voting procedure yielding the estimation of the illuminant. This approach is very simple and learning-free. The voting procedure can be extended for the detection of multiple illuminants when necessary. Experiments on various databases show that the performances of this approach are similar to those of the best learning-based state-of-the-art algorithms.

[1]  De Xu,et al.  Color Constancy Using Achromatic Surface , 2010 .

[2]  Keigo Hirakawa,et al.  Color Constancy with Spatio-Spectral Statistics , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.

[4]  Kyu-Ik Sohng,et al.  Compensation of de-saturation effect in HDR imaging using a real scene adaptation model , 2013, J. Vis. Commun. Image Represent..

[5]  Theo Gevers,et al.  Color Constancy Using Natural Image Statistics and Scene Semantics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Lionel Moisan,et al.  A Grouping Principle and Four Applications , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Theo Gevers,et al.  Color Constancy for Multiple Light Sources , 2012, IEEE Transactions on Image Processing.

[8]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  María Vanrell,et al.  Color Constancy by Category Correlation , 2012, IEEE Transactions on Image Processing.

[10]  Marc Ebner A parallel algorithm for color constancy , 2004, J. Parallel Distributed Comput..

[11]  Frédo Durand,et al.  Light mixture estimation for spatially varying white balance , 2008, ACM Trans. Graph..

[12]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[13]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[14]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[15]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[16]  Brian V. Funt,et al.  Color Constancy for Scenes with Varying Illumination , 1997, Comput. Vis. Image Underst..

[17]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[18]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[19]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[20]  Brian V. Funt,et al.  Color constancy under varying illumination , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Takahiko Horiuchi,et al.  Estimation of Multiple Illuminants Based on Specular Highlight Detection , 2011, CCIW.

[22]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[23]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[24]  Theo Gevers,et al.  Perceptual analysis of distance measures for color constancy algorithms. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Irwin G. Priest A Proposed Scale for Use in Specifying the Chromaticity of Incandescent Illuminants and Various Phases of Daylight , 1933 .

[26]  Byoung-Ho Kang,et al.  Automatic White Balancing via Gray Surface Identification , 2007, CIC.

[27]  Xiaoyong Wang,et al.  Cluster Based Color Constancy , 2008, Color Imaging Conference.

[28]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Katsushi Ikeuchi,et al.  A ROBUST FRAMEWORK TO ESTIMATE SURFACE COLOR FROM CHANGING ILLUMINATION , 2004 .

[30]  Guillermo Sapiro,et al.  Color and Illuminant Voting , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Martial Hebert,et al.  Color constancy using KL-divergence , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[32]  Christian Riess,et al.  Color constancy and non-uniform illumination: Can existing algorithms work? , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[33]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[34]  W. Marsden I and J , 2012 .

[35]  M. S. Drew,et al.  Color constancy - Generalized diagonal transforms suffice , 1994 .

[36]  Ingeborg Tastl,et al.  Gamut Constrained Illuminant Estimation , 2006, International Journal of Computer Vision.

[37]  W Richards,et al.  Model for color conversion. , 1971, Journal of the Optical Society of America.

[38]  Joost van de Weijer,et al.  Physics-based edge evaluation for improved color constancy , 2009, CVPR.

[39]  Brian V. Funt,et al.  A comparison of computational color constancy Algorithms. II. Experiments with image data , 2002, IEEE Trans. Image Process..

[40]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[41]  Julie Delon,et al.  Illuminant Estimation from Projections on the Planckian Locus , 2012, ECCV Workshops.

[42]  Katsushi Ikeuchi,et al.  Consistent surface color for texturing large objects in outdoor scenes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[43]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[44]  Soo-Chang Pei,et al.  Color constancy by chromaticity neutralization. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  J Romero,et al.  Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. , 1999, Applied optics.

[47]  Cordelia Schmid,et al.  Using High-Level Visual Information for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[48]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[49]  G D Finlayson,et al.  Color constancy at a pixel. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  Marc Ebner Estimating the Color of the Illuminant Using Anisotropic Diffusion , 2007, CAIP.

[51]  Frédo Durand,et al.  User-guided white balance for mixed lighting conditions , 2012, ACM Trans. Graph..

[52]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[53]  Raimondo Schettini,et al.  Improving Color Constancy Using Indoor–Outdoor Image Classification , 2008, IEEE Transactions on Image Processing.

[54]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis , 2008 .