SIMO and MIMO System Architectures and Modes for High-Resolution Ultra-Wide-Swath SAR Imaging

This paper reviews advanced SAR system architectures and modes for high-resolution ultra-wide-swath SAR imaging. The comparison includes both direct radiating array antennas and reflector-based system configurations operating in either a single-transmit multiple-receive (SIMO) or a multiple-transmit multiple-receive (MIMO) mode.

[1]  Gerhard Krieger,et al.  Small Satellite Dispersed SAR - an Exemplary Configuration , 2016 .

[2]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[3]  R. Scheiber,et al.  Interferometry with TOPS: coregistration and azimuth shifts , 2014 .

[4]  베르나하드 그라프뮐러,et al.  High-resolution synthetic aperture radar device and antenna for one such radar device , 2006 .

[5]  Alberto Moreira,et al.  Cross-platform spaceborne Sar imaging: Demonstration using TanDEM-X , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[6]  Gerhard Krieger,et al.  A Novel Processing Strategy for Staggered SAR , 2014, IEEE Geoscience and Remote Sensing Letters.

[7]  Gerhard Krieger,et al.  Staggered SAR: High-Resolution Wide-Swath Imaging by Continuous PRI Variation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Thomas Krauß,et al.  Demonstration of the Applicability of 2-Look Burst Modes in Non-Stationary Scenarios with TerraSAR-X , 2016 .

[9]  Feng He,et al.  Digital Beamforming on Receive in Elevation for Multidimensional Waveform Encoding SAR Sensing , 2014, IEEE Geoscience and Remote Sensing Letters.

[10]  Gerhard Krieger,et al.  Multistatic SAR Imaging: First Results of a Four Phase Center Experiment with TerraSAR-X and TanDEM-X , 2016 .

[11]  Gerhard Krieger,et al.  Along-track SAR interferometry using a single reflector antenna , 2015 .

[12]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[13]  Gerhard Krieger,et al.  Multichannel Azimuth Processing in ScanSAR and TOPS Mode Operation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Gerhard Krieger,et al.  Multichannel Staggered SAR Azimuth Sample Regularization , 2016 .

[15]  Nathan A. Goodman,et al.  Processing of multiple-receiver spaceborne arrays for wide-area SAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  G. Krieger,et al.  Potential of digital beamforming in bi- and multistatic SAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[17]  Gerhard Krieger,et al.  Spaceborne Reflector SAR Systems with Digital Beamforming , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Wei Xu,et al.  Echo Separation in Multidimensional Waveform Encoding SAR Remote Sensing Using an Advanced Null-Steering Beamformer , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[21]  G. Krieger,et al.  Advanced synthetic aperture radar based on digital beamforming and waveform diversity , 2008, 2008 IEEE Radar Conference.

[22]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[23]  G. Krieger,et al.  SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR , 2009, 2009 IEEE Radar Conference.

[24]  Ishuwa C. Sikaneta,et al.  MIMO SAR Processing for Multichannel High-Resolution Wide-Swath Radars , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Gerhard Krieger,et al.  Advanced Concepts for Ultra-Wide-Swath SAR Imaging , 2008 .

[26]  Alberto Moreira,et al.  Impact of TEC gradients and higher-order ionospheric disturbances on spaceborne single-pass SAR interferometry , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[27]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Yijun He,et al.  Improved DBF Algorithm for Multichannel High-Resolution Wide-Swath SAR , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[29]  I. Longstaff,et al.  Wide-swath space-borne SAR using a quad-element array , 1999 .

[30]  Werner Wiesbeck,et al.  Spaceborne MIMO Synthetic Aperture Radar for Multimodal Operation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[31]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[32]  P. Mancini,et al.  Ambiguity Suppression In Sars Using Adaptive Array Techniques , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[33]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[34]  Gerhard Krieger,et al.  Tandem-L: Design Concepts for a Next-Generation Spaceborne SAR System , 2016 .

[35]  Marwan Younis,et al.  CEBRAS: Cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[36]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[37]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Gerhard Krieger,et al.  Data volume reduction in high-resolution wide-swath SAR systems , 2015, 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[39]  Friedhelm Rostan,et al.  FS-5, paper 5: Earth observation instruments with e-scan antennas state-of-the-art and outlook , 2010, MTT 2010.

[40]  Marwan Younis,et al.  Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface , 2015, IEEE Geoscience and Remote Sensing Magazine.

[41]  D. Stumpf,et al.  Radar systems , 2018 .

[42]  Ishuwa C. Sikaneta,et al.  Optimum Signal Processing for Multichannel SAR: With Application to High-Resolution Wide-Swath Imaging , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[43]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[44]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .