Decoding the activity of neuronal populations in macaque primary visual cortex

Visual function depends on the accuracy of signals carried by visual cortical neurons. Combining information across neurons should improve this accuracy because single neuron activity is variable. We examined the reliability of information inferred from populations of simultaneously recorded neurons in macaque primary visual cortex. We considered a decoding framework that computes the likelihood of visual stimuli from a pattern of population activity by linearly combining neuronal responses and tested this framework for orientation estimation and discrimination. We derived a simple parametric decoder assuming neuronal independence and a more sophisticated empirical decoder that learned the structure of the measured neuronal response distributions, including their correlated variability. The empirical decoder used the structure of these response distributions to perform better than its parametric variant, indicating that their structure contains critical information for sensory decoding. These results show how neuronal responses can best be used to inform perceptual decision-making.

[1]  D Regan,et al.  The relation between discrimination and sensitivity in the perception of motion in depth. , 1975, The Journal of physiology.

[2]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[3]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[4]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[5]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[6]  G. Orban,et al.  How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  E. T. Jaynes,et al.  Probability Theory as Logic , 1990 .

[8]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[9]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[11]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  T. Sanger,et al.  Probability density estimation for the interpretation of neural population codes. , 1996, Journal of neurophysiology.

[13]  K. H. Britten,et al.  A relationship between behavioral choice and the visual responses of neurons in macaque MT , 1996, Visual Neuroscience.

[14]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[15]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[16]  Peter E. Latham,et al.  Statistically Efficient Estimation Using Population Coding , 1998, Neural Computation.

[17]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[18]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[19]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[20]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[21]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[22]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[23]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[24]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[25]  Si Wu,et al.  Population Coding with Correlation and an Unfaithful Model , 2001, Neural Computation.

[26]  T. Shibasaki,et al.  Retinal ganglion cells act largely as independent encoders , 2001 .

[27]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[28]  J. Movshon,et al.  The Timing of Response Onset and Offset in Macaque Visual Neurons , 2002, The Journal of Neuroscience.

[29]  E. Jaynes Probability theory : the logic of science , 2003 .

[30]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[31]  R. Romo,et al.  Correlated Neuronal Discharges that Increase Coding Efficiency during Perceptual Discrimination , 2003, Neuron.

[32]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[33]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[34]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[35]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[36]  D. Butts,et al.  Tuning Curves, Neuronal Variability, and Sensory Coding , 2006, PLoS biology.

[37]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[38]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[39]  Michael S Landy,et al.  Combining Priors and Noisy Visual Cues in a Rapid Pointing Task , 2006, The Journal of Neuroscience.

[40]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[41]  Haim Sompolinsky,et al.  Implications of Neuronal Diversity on Population Coding , 2006, Neural Computation.

[42]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[43]  J. Movshon,et al.  A new perceptual illusion reveals mechanisms of sensory decoding , 2007, Nature.

[44]  Michael N. Shadlen,et al.  Probabilistic reasoning by neurons , 2007, Nature.

[45]  M. A. Smith,et al.  The Role of Correlations in Direction and Contrast Coding in the Primary Visual Cortex , 2007, The Journal of Neuroscience.

[46]  Valentin Dragoi,et al.  Adaptive coding of visual information in neural populations , 2008, Nature.

[47]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[48]  C. Law,et al.  Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area , 2008, Nature Neuroscience.

[49]  K. H. Britten,et al.  A relationship between behavioral choice and the visual responses of neurons in macaque , 2008 .

[50]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[51]  Timothy D. Hanks,et al.  Probabilistic Population Codes for Bayesian Decision Making , 2008, Neuron.

[52]  Matteo Carandini,et al.  Coding of stimulus sequences by population responses in visual cortex , 2009, Nature Neuroscience.

[53]  Eero P. Simoncelli Optimal Estimation in Sensory Systems , 2009 .

[54]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[55]  R. K. Simpson Nature Neuroscience , 2022 .