Identification of Nonlinear Cascade Systems with Noninvertible Piecewise Linear Input and Backlash Output Nonlinearities

Abstract The paper deals with the parameter identification of cascade nonlinear dynamic systems with noninvertible piecewise linear input nonlinearities and backlash output nonlinearities. Application of the key term separation principle provides special expressions for the corresponding nonlinear model description that are linear in parameters. A least squares based iterative technique allows estimation of all the model parameters based on measured input/output data. Simulation studies illustrate the feasibility of proposed identification method.

[1]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[2]  F. Ding,et al.  Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique , 2014, Nonlinear Dynamics.

[3]  Jozef Vörös,et al.  Identification of cascade systems with backlash , 2010, Int. J. Control.

[4]  Andrzej Janczak,et al.  Neural network approach for identification of Hammerstein systems , 2003 .

[5]  Er-Wei Bai,et al.  Towards identification of Wiener systems with the least amount of a priori information: IIR cases , 2009, Autom..

[6]  Lincheng Zhou,et al.  Gradient based iterative parameter identification for Wiener nonlinear systems , 2013 .

[7]  Michael W. Marcellin,et al.  Wavelet Amendment of Polynomial Models in Hammerstein Systems Identification , 2009, IEEE Transactions on Automatic Control.

[8]  Vlasta Kaňková On the stability in stochastic programming – generalized simple recourse problems , 1994 .

[9]  F. Ding,et al.  Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle , 2014 .

[10]  Ruifeng Ding,et al.  Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities , 2014 .

[11]  Rimantas Pupeikis,et al.  On the Identification of Wiener Systems Having Saturation-like Functions with Positive Slopes , 2005, Informatica.

[12]  Zygmunt Hasiewicz,et al.  Combined parametric-nonparametric identification of Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[13]  Er-Wei Bai,et al.  Generalized Wiener system identification: General backlash nonlinearity and finite impulse response linear part , 2014 .

[14]  Yonghong Tan,et al.  Recursive identification algorithm for dynamic systems with output backlash and its convergence , 2009, Int. J. Appl. Math. Comput. Sci..

[15]  Feng Ding,et al.  Hierarchical Least Squares Estimation Algorithm for Hammerstein–Wiener Systems , 2012, IEEE Signal Processing Letters.

[16]  Fouad Giri,et al.  Identification of block-oriented systems in the presence of nonparametric input nonlinearities of switch and backlash types , 2010, Autom..

[17]  Vladislav Rajkovic,et al.  Multiple-Criteria Approach to Optimisation of Multidimensional Data Models , 2015, Informatica.

[18]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[19]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[20]  J. Voros Modeling and parameter identification of systems with multisegment piecewise-linear characteristics , 2002 .

[21]  J. Voros AN ITERATIVE METHOD FOR HAMMERSTEIN-WIENER SYSTEMS PARAMETER IDENTIFICATION , 2004 .

[22]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[23]  Chang-Chieh Hang Remarks on ‘ of model reference adaptive control systems for non-linear plants ’ , 1973 .

[24]  Bo Li,et al.  Nonlinear modeling and identification of the electro-hydraulic control system of an excavator arm using BONL model , 2013 .

[25]  Kazys Kazlauskas,et al.  On Intelligent Extraction of an Internal Signal in a Wiener System Consisting of a Linear Block Followed by Hard-Nonlinearity , 2013, Informatica.

[26]  Rimantas Pupeikis,et al.  On the Identification of Hammerstein Systems Having Saturation-like Functions with Positive Slopes , 2006, Informatica.

[27]  Erfu Yang,et al.  Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition , 2016 .