Logics of Dynamical Systems

We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical systems. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important in modeling and understanding many applications, including embedded systems and cyber-physical systems. In discrete dynamical systems, the state evolves in discrete steps, one step at a time, as described by a difference equation or discrete state transition relation. In continuous dynamical systems, the state evolves continuously along a function, typically described by a differential equation. Hybrid dynamical systems or hybrid systems combine both discrete and continuous dynamics. This is a brief survey of differential dynamic logic for specifying and verifying properties of hybrid systems. We explain hybrid system models, differential dynamic logic, its semantics, and its axiomatization for proving logical formulas about hybrid systems. We study differential invariants, i.e., induction principles for differential equations. We briefly survey theoretical results, including soundness and completeness and deductive power. Differential dynamic logic has been implemented in automatic and interactive theorem provers and has been used successfully to verify safety-critical applications in automotive, aviation, railway, robotics, and analogue electrical circuits.

[1]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[2]  Sorin Istrail An Arithmetical Hierarchy in Propositional Dynamic Logic , 1989, Inf. Comput..

[3]  K. Segerberg A completeness theorem in the modal logic of programs , 1982 .

[4]  Rohit Parikh,et al.  The Completeness of Propositional Dynamic Logic , 1978, MFCS.

[5]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[6]  M. Fitting First-order logic and automated theorem proving (2nd ed.) , 1996 .

[7]  Olaf Stursberg,et al.  Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refinement , 2003, TACAS.

[8]  Ashish Tiwari Approximate Reachability for Linear Systems , 2003, HSCC.

[9]  Joël Ouaknine,et al.  Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems , 2003, Int. J. Found. Comput. Sci..

[10]  John Lygeros,et al.  Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems , 2008, Autom..

[11]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[12]  Hirokazu Anai,et al.  Reach Set Computations Using Real Quantifier Elimination , 2001, HSCC.

[13]  Stephan Merz,et al.  Model Checking , 2000 .

[14]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[15]  Henny B. Sipma,et al.  Deductive Verification of Hybrid Systems Using STeP , 1998, HSCC.

[16]  Annabelle McIver,et al.  Abstraction, Refinement and Proof for Probabilistic Systems , 2004, Monographs in Computer Science.

[17]  Oded Galor,et al.  Discrete Dynamical Systems , 2005 .

[18]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[19]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[20]  Sonia R. Sachs,et al.  Design Of Platoon Maneuver Protocols For IVHS , 1991 .

[21]  André Platzer,et al.  Quantified differential invariants , 2011, HSCC '11.

[22]  André Platzer,et al.  Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified , 2011, FM.

[23]  André Platzer,et al.  European Train Control System: A Case Study in Formal Verification , 2009, ICFEM.

[24]  Roger C. Bales,et al.  A hybrid system model of seasonal snowpack water balance , 2010, HSCC '10.

[25]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[26]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[27]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[28]  José Meseguer,et al.  Specification and Analysis of Distributed Object-Based Stochastic Hybrid Systems , 2006, HSCC.

[29]  Ashish Tiwari,et al.  Abstractions for hybrid systems , 2008, Formal Methods Syst. Des..

[30]  Zohar Manna,et al.  The calculus of computation - decision procedures with applications to verification , 2007 .

[31]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[32]  Xenofon D. Koutsoukos,et al.  Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System , 2010, Eur. J. Control.

[33]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[34]  Erika Ábrahám,et al.  Verification of hybrid systems: formalization and proof rules in PVS , 2001, Proceedings Seventh IEEE International Conference on Engineering of Complex Computer Systems.

[35]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1995, J. Comput. Syst. Sci..

[36]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[37]  Stephen A. Cook,et al.  Soundness and Completeness of an Axiom System for Program Verification , 1978, SIAM J. Comput..

[38]  Lijun Zhang,et al.  Safety Verification for Probabilistic Hybrid Systems , 2010, Eur. J. Control.

[39]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[40]  Marta Z. Kwiatkowska,et al.  Symbolic model checking for probabilistic timed automata , 2007, Inf. Comput..

[41]  Rudolf Carnap Modalities and Quantification , 1946, J. Symb. Log..

[42]  André Platzer,et al.  Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs , 2011, CADE.

[43]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[44]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.

[45]  Christel Baier,et al.  Symbolic Model Checking for Probabilistic Processes , 1997, ICALP.

[46]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[47]  Bruno Dutertre,et al.  Complete proof systems for first order interval temporal logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[48]  André Platzer,et al.  Real World Verification , 2009, CADE.

[49]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[50]  Torben Braüner,et al.  First-order modal logic , 2007, Handbook of Modal Logic.

[51]  Albert R. Meyer,et al.  Computability and completeness in logics of programs (Preliminary Report) , 1977, STOC '77.

[52]  M. K. Ghosh,et al.  Ergodic Control of Switching Diffusions , 1997 .

[53]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[54]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[55]  Daniel Leivant,et al.  Matching Explicit and Modal Reasoning about Programs: A Proof Theoretic Delineation of Dynamic Logic , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[56]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[57]  Nancy A. Lynch,et al.  Dynamic input/output automata, a formal model for dynamic systems , 2001, PODC '01.

[58]  Lydia E. Kavraki,et al.  Hybrid systems: from verification to falsification by combining motion planning and discrete search , 2007, CAV.

[59]  Alexandre M. Bayen,et al.  VERIFICATION OF HYBRID SYSTEMS , 2004 .

[60]  André Platzer,et al.  Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2010, CSL.

[61]  Philipp Rümmer,et al.  Sequential, Parallel, and Quantified Updates of First-Order Structures , 2006, LPAR.

[62]  Axel Legay,et al.  A Bayesian Approach to Model Checking Biological Systems , 2009, CMSB.

[63]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[64]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[65]  Anders P. Ravn,et al.  A Formal Description of Hybrid Systems , 1996, Hybrid Systems.

[66]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[67]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[68]  Ka Lok Man,et al.  Syntax and consistent equation semantics of hybrid Chi , 2006, J. Log. Algebraic Methods Program..

[69]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[70]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[71]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[72]  P. Hartman Ordinary Differential Equations , 1965 .

[73]  Xenofon D. Koutsoukos,et al.  Computational Methods for Verification of Stochastic Hybrid Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[74]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[75]  Pieter Collins Optimal Semicomputable Approximations to Reachable and Invariant Sets , 2006, Theory of Computing Systems.

[76]  John Harrison,et al.  Verifying Nonlinear Real Formulas Via Sums of Squares , 2007, TPHOLs.

[77]  Thao Dang,et al.  Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control , 2012 .

[78]  P. Protter Stochastic integration and differential equations , 1990 .

[79]  Pravin Varaiya,et al.  SHIFT: A Formalism and a Programming Language for Dynamic Networks of Hybrid Automata , 1996, Hybrid Systems.

[80]  Edmund M. Clarke,et al.  Computing Differential Invariants of Hybrid Systems as Fixedpoints , 2008, CAV.

[81]  C.D. Vournas,et al.  Hybrid systems modeling for power systems , 2004, IEEE Circuits and Systems Magazine.

[82]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[83]  Thomas A. Henzinger,et al.  Hybrid systems III : verification and control , 1996 .

[84]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[85]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[86]  Bernhard Beckert,et al.  Verification of Object-Oriented Software. The KeY Approach - Foreword by K. Rustan M. Leino , 2007, The KeY Approach.

[87]  Ashish Tiwari,et al.  Logic in Software, Dynamical and Biological Systems , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[88]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[89]  Håkan L. S. Younes,et al.  Numerical vs. statistical probabilistic model checking , 2006, International Journal on Software Tools for Technology Transfer.

[90]  André Platzer Differential Dynamic Logic: Automated Theorem Proving for Hybrid Systems , 2008, Ausgezeichnete Informatikdissertationen.

[91]  Rajeev Alur,et al.  Formal verification of hybrid systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[92]  William C. Rounds,et al.  A Spatial Logic for the Hybrid p-Calculus , 2004, HSCC.

[93]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2006, Theor. Comput. Sci..

[94]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[95]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[96]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology , 2005, ATVA.

[97]  Kaisa Sere,et al.  Hybrid action systems , 2003, Theor. Comput. Sci..

[98]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[99]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[100]  Martin Fränzle,et al.  Engineering constraint solvers for automatic analysis of probabilistic hybrid automata , 2010, J. Log. Algebraic Methods Program..

[101]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[102]  Yi Zhang,et al.  Safety-assured development of the GPCA infusion pump software , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[103]  André Platzer,et al.  A Temporal Dynamic Logic for Verifying Hybrid System Invariants , 2007, LFCS.

[104]  Kurt Stenzel,et al.  Proving System Correctness with KIV 3.0 , 1997, CADE.

[105]  Ernst-Rüdiger Olderog,et al.  Real-time systems - formal specification and automatic verification , 2008 .

[106]  André Platzer,et al.  Towards Formal Verification of Freeway Traffic Control , 2012, 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems.

[107]  Hardi Hungar,et al.  On the Verification of Cooperating Traffic Agents , 2003, FMCO.

[108]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[109]  André Platzer,et al.  Combining Deduction and Algebraic Constraints for Hybrid System Analysis , 2007, VERIFY.

[110]  Bernhard Beckert,et al.  Dynamic logic with non-rigid functions a basis for object-oriented program verification , 2006 .

[111]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[112]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[113]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[114]  Rajeev Alur,et al.  Predicate abstraction for reachability analysis of hybrid systems , 2006, TECS.

[115]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[116]  Lauretta O. Osho,et al.  Axiomatic Basis for Computer Programming , 2013 .

[117]  Michael S. Branicky,et al.  General Hybrid Dynamical Systems: Modeling, Analysis, and Control , 1996, Hybrid Systems.

[118]  S. Sastry,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[119]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[120]  André Platzer,et al.  Safe intersections: At the crossing of hybrid systems and verification , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[121]  Antoine Girard,et al.  Reachability Analysis of Hybrid Systems Using Support Functions , 2009, CAV.

[122]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[123]  Stefan Ratschan,et al.  Safety verification of hybrid systems by constraint propagation-based abstraction refinement , 2007, TECS.

[124]  Ian M. Mitchell,et al.  A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems , 2005, HSCC.

[125]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[126]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[127]  Joseph Sifakis,et al.  An Approach to the Description and Analysis of Hybrid Systems , 1992, Hybrid Systems.

[128]  Hosung Song,et al.  The Phi-Calculus: A Language for Distributed Control of Reconfigurable Embedded Systems , 2003, HSCC.

[129]  Vaughan R. Pratt,et al.  Semantical consideration on floyo-hoare logic , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[130]  Edmund M. Clarke,et al.  Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study , 2009, FM.

[131]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[132]  Edmund M. Clarke,et al.  Bayesian statistical model checking with application to Stateflow/Simulink verification , 2010, Formal Methods in System Design.

[133]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[134]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[135]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[136]  Bruce H. Krogh,et al.  Using theorem provers to guarantee closed-loop system properties , 2012, 2012 American Control Conference (ACC).

[137]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[138]  André Platzer,et al.  Distributed Theorem Proving for Distributed Hybrid Systems , 2011, ICFEM.

[139]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[140]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[141]  Ezio Bartocci,et al.  From Cardiac Cells to Genetic Regulatory Networks , 2011, CAV.

[142]  Albert R. Meyer,et al.  Definability in Dynamic Logic , 1980, STOC '80.

[143]  Frank S. de Boer,et al.  Verification of Sequential and Concurrent Programs , 1997, Texts and Monographs in Computer Science.

[144]  Joao P. Hespanha,et al.  Hybrid systems : computation and control : 9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006 : proceedings , 2006 .

[145]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[146]  Zohar Manna,et al.  From Timed to Hybrid Systems , 1991, REX Workshop.

[147]  Hscc Hybrid systems : computation and control : 6th International Workshop, HSCC 2003, Prague, Czech Republic, April 3-5, 2003 : proceedings , 2003 .

[148]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[149]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[150]  Zohar Manna,et al.  Verification of Clocked and Hybrid Systems , 1996, European Educational Forum: School on Embedded Systems.

[151]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[152]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[153]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking I: Challenges from Systems Biology , 2005, CAV.

[154]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[155]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[156]  Taylor T. Johnson,et al.  A Small Model Theorem for Rectangular Hybrid Automata Networks , 2012, FMOODS/FORTE.

[157]  Yishai A. Feldman,et al.  A probabilistic dynamic logic , 1982, STOC '82.

[158]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[159]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[160]  Nancy A. Lynch,et al.  Self-stabilizing robot formations over unreliable networks , 2009, TAAS.

[161]  Christel Baier,et al.  Principles of model checking , 2008 .

[162]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.

[163]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[164]  Vaughan R. Pratt,et al.  A decidable mu-calculus: Preliminary report , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[165]  David Peleg,et al.  Concurrent dynamic logic , 1985, STOC '85.

[166]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[167]  Insup Lee,et al.  R-Charon, a Modeling Language for Reconfigurable Hybrid Systems , 2006, HSCC.

[168]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[169]  Christel Baier,et al.  PROBMELA: a modeling language for communicating probabilistic processes , 2004, Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE '04..

[170]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[171]  Mahesh Viswanathan,et al.  On Statistical Model Checking of Stochastic Systems , 2005, CAV.

[172]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[173]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[174]  André Platzer,et al.  A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2012, Log. Methods Comput. Sci..

[175]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[176]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.