Proposed approach for combining distributed sensing, robotic sampling, and offline analysis for in-situ marine monitoring

An approach for coordinated, distributed, in situ sensing is proposed. An example application is chosen (offshore marine monitoring) and the approach is described in the context of the example. Three major research challenges are discussed, (1) coordinated sensing and triggering, (2) localization and time synchronization, and (3) micro mobility.

[1]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[2]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[3]  Gaurav S. Sukhatme,et al.  Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Gaurav S. Sukhatme,et al.  Robust localization using relative and absolute position estimates , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[5]  Maja J. Mataric,et al.  Designing and Understanding Adaptive Group Behavior , 1995, Adapt. Behav..

[6]  David A. Caron,et al.  Protistan community structure: molecular approaches for answering ecological questions , 1999 .

[7]  Gaurav S. Sukhatme,et al.  State estimation of an autonomous helicopter using Kalman filtering , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[8]  P. Lehenkari,et al.  Adapting atomic force microscopy for cell biology. , 2000, Ultramicroscopy.

[9]  David L. Mills,et al.  Internet time synchronization: the network time protocol , 1991, IEEE Trans. Commun..

[10]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[11]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[12]  Maja J. Matari,et al.  Behavior-based Control: Examples from Navigation, Learning, and Group Behavior , 1997 .

[13]  Maja J. Mataric,et al.  Issues and approaches in the design of collective autonomous agents , 1995, Robotics Auton. Syst..

[14]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[15]  Peter T. Lansbury,et al.  Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems , 1998 .

[16]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[17]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[18]  David A. Caron,et al.  The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures , 1999 .

[19]  Maja J. Mataric,et al.  Learning social behavior , 1997, Robotics Auton. Syst..

[20]  Georg Papastavrou,et al.  Specific detection of interactions between uncharged surfaces in different solvents: high-resolution imaging by chemical force microscopy , 1999 .

[21]  C. le Grimellec,et al.  Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. , 2000, Ultramicroscopy.

[22]  Gaurav S. Sukhatme,et al.  Heterogeneous Robot Group Control and Applications , 1999 .