How effective is a rank-based filter with a frequency and orientation selective response?

[1]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[3]  Harry S. Orbach,et al.  Computing feature motion without feature detectors: A model for terminator motion without end-stopped cells 1 This research was first reported at the Annual Meeting of the Association for Research in Vision and Ophthalmology, May 1997. 1 , 1999, Vision Research.

[4]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[5]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[6]  Fabrizio Smeraldi Ranklets: orientation selective non-parametric features applied to face detection , 2002, Object recognition supported by user interaction for service robots.

[7]  Takeo Watanabe,et al.  Neuroimaging of direction-selective mechanisms for second-order motion. , 2003, Journal of neurophysiology.

[8]  Shree K. Nayar,et al.  Ordinal measures for visual correspondence , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  D. Michael,et al.  Distribution-free dispersion tests for data with ties , 2001 .

[10]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Prashant Parikh A Theory of Communication , 2010 .

[12]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[13]  N. Graham,et al.  Spatial summation in simple (fourier) and complex (non-fourier) texture channels , 1998, Vision Research.

[14]  I Mareschal,et al.  Cortical processing of second-order motion , 1999, Visual Neuroscience.

[15]  Lianping Chen,et al.  Effects of different Gabor filters parameters on image retrieval by texture , 2004, 10th International Multimedia Modelling Conference, 2004. Proceedings..

[16]  C. Baker,et al.  Processing of second-order stimuli in the visual cortex. , 2001, Progress in brain research.

[17]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[18]  J. Tukey,et al.  A Nonparametric Sum of Ranks Procedure for Relative Spread in Unpaired Samples , 1960 .

[19]  T. Poggio,et al.  Shape representation in V4: Investigating position-specific tuning for boundary conformation with the standard model of object recognition , 2010 .

[20]  Francesco Bianconi,et al.  Evaluation of the effects of Gabor filter parameters on texture classification , 2007, Pattern Recognit..

[21]  S. Dakin,et al.  Sensitivity to contrast modulation depends on carrier spatial frequency and orientation , 2000, Vision Research.

[22]  Hugh R. Wilson,et al.  Non-Fourier Cortical Processes in Texture, Form, and Motion Perception , 1999 .

[23]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[24]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[26]  J. Ravenel The Essential Physics of Medical Imaging, 2nd ed. , 2003 .

[27]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[28]  Mitchell J. Mergenthaler Nonparametrics: Statistical Methods Based on Ranks , 1979 .

[29]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[30]  T. Poggio,et al.  How Visual Cortex Recognizes Objects: The Tale of the Standard Model , 2002 .

[31]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[32]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[33]  Y. Lepage A combination of Wilcoxon's and Ansari-Bradley's statistics , 1971 .

[34]  H. J. Tochon-Danguy,et al.  Second Order Components of Moving Plaids Activate Extrastriate Cortex: A Positron Emission Tomography Study , 1999, NeuroImage.

[35]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[36]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[37]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[38]  Johannes M. Zanker,et al.  Theta motion: a paradoxical stimulus to explore higher order motion extraction , 1993, Vision Research.

[39]  N. Graham Visual Pattern Analyzers , 1989 .

[40]  Alan C. Evans,et al.  Cortical specialization for processing first- and second-order motion. , 2003, Cerebral cortex.

[41]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[42]  Fabrizio Smeraldi,et al.  Ranklets on hexagonal pixel lattices , 2003, BMVC.

[43]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[44]  Adriane E Seiffert,et al.  Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. , 2003, Cerebral cortex.

[45]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[46]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[47]  Michael S. Landy,et al.  Visual perception of texture , 2002 .

[48]  A. R. Ansari,et al.  Rank-Sum Tests for Dispersions , 1960 .

[49]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[50]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[51]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[52]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[53]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[54]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[55]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[56]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[57]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[58]  M. Landy,et al.  Properties of second-order spatial frequency channels , 2002, Vision Research.

[59]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[60]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[61]  Michael S. Landy,et al.  Orthogonal Distribution Analysis: A New Approach to the Study of Texture Perception , 1991 .

[62]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[63]  W. Snyder,et al.  A Biological-Plausable Architecture for Shape Recognition , 2006 .

[64]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[65]  G. Sáry,et al.  Cerebral regions processing first‐ and higher‐order motion in an opposed‐direction discrimination task , 2003, The European journal of neuroscience.

[66]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[67]  M. Landy,et al.  Histogram contrast analysis and the visual segregation of IID textures. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.