Over-the-horizon, autonomous navigation for planetary exploration

The success of NASA's Mars exploration rovers has demonstrated the important benefits that mobility adds to planetary exploration. Very soon, mission requirements will impose that planetary exploration rovers drive over-the-horizon in a single command cycle. This require an evolution of the methods and technologies currently used. This paper presents experimental validation of our over-the-horizon autonomous planetary navigation. We present our approach to 3D terrain reconstruction from large sparse range data sets, localization and autonomous navigation in a Mars-like terrain. Our approach is based on on-line acquisition of range scans, map construction from these scans, path planning and navigation using the map. An autonomy engine supervises the whole process ensuring the safe navigation of the planetary rover. The outdoor experimental results demonstrate the effectiveness of the reconstructed terrain model for rover localization, path planning and motion execution scenario as well as the autonomy capability of our approach.

[1]  C. Lee,et al.  Software architecture of sensor data distribution in planetary exploration , 2006, 2006 IEEE Aerospace Conference.

[2]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[3]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[4]  Howie Choset,et al.  The hierarchical atlas , 2005, IEEE Transactions on Robotics.

[5]  Alessandro Astolfi,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 1999 .

[6]  Yasuharu Kunii,et al.  Accuracy improvement of Shadow Range Finder: SRF for 3D surface measurement , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[7]  Ioannis Stamos,et al.  AVENUE: Automated site modeling in urban environments , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[8]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[9]  Nobuyuki Kita,et al.  3D simultaneous localisation and map-building using active vision for a robot moving on undulating terrain , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[11]  H. Temeltas,et al.  Autonomous navigation for planetary exploration by a mobile robot , 2003, International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of.

[12]  Dongmei Zhang,et al.  Harmonic Shape Images: A 3D Free-form Surface Representation and Its Applications in Surface Matching , 1999 .

[13]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[14]  A. Astolfl,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 2007 .

[15]  Joonki Paik,et al.  Point fingerprint: A new 3-D object representation scheme , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Joachim Hertzberg,et al.  High-speed laser localization for mobile robots , 2005, Robotics Auton. Syst..

[17]  Marc G. Slack Navigation templates: mediating qualitative guidance and quantitative control in mobile robots , 1993, IEEE Trans. Syst. Man Cybern..

[18]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[19]  Ayanna M. Howard,et al.  Intelligence For Space Robotics , 2008 .

[20]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[21]  Joachim Hertzberg,et al.  Automatic Reconstruction of Colored 3D Models , 2004 .

[22]  Ioannis M. Rekleitis,et al.  TOWARDS AUTONOMOUS LONG-RANGE NAVIGATION , 2005 .

[23]  Stephen Braham,et al.  Communication system architecture for planetary exploration , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[24]  I. Nakatani,et al.  Autonomous behavior planning scheme for exploration rover , 2006, 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06).

[25]  John R. Wright,et al.  Terrain Modelling for In-situ Activity Planning and Rehearsal for the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[26]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[27]  Georges Giralt,et al.  The French Planetary Rover Vap: Concept And Current Developments , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Regis Hoffman,et al.  Terrain mapping for a walking planetary rover , 1994, IEEE Trans. Robotics Autom..

[29]  S.A. Hayati,et al.  Initiating the 2002 Mars Science Laboratory (MSL) focused technology program , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[30]  Wolfram Burgard,et al.  Learning compact 3D models of indoor and outdoor environments with a mobile robot , 2003, Robotics Auton. Syst..

[31]  Erick Dupuis,et al.  Rover Localization through 3D Terrain Registration in Natural Environments , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[33]  T. Estlin,et al.  Spatial Coverage Planning and Optimization for a Planetary Exploration Rover , 2006 .

[34]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[35]  Roland Siegwart,et al.  Inertial and 3D-odometry fusion in rough terrain - towards real 3D navigation , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[36]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[37]  M. Bualat,et al.  Single-Cycle Instrument Deployment for Mars Rovers , 2003 .

[38]  Richard Volpe,et al.  Rover functional autonomy development for the mars mobile science laboratory , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[39]  Erick Dupuis,et al.  3D Terrain Modeling for Rover Localization and Navigation , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[40]  Sebastian Thrun,et al.  Simultaneous localization and mapping with unknown data association using FastSLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[41]  Bruno Gardini,et al.  The ExoMars Mission of ESA's Aurora Programme , 2004 .

[42]  Wolfram Burgard,et al.  Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.