Fully Anonymous Group Signatures without Random Oracles

We construct a new group signature scheme using bilinear groups. The group signature scheme is practical, both keys and group signatures consist of a constant number of group elements, and the scheme permits dynamic enrollment of new members. The scheme satisfies strong security requirements, in particular providing protection against key exposures and not relying on random oracles in the security proof.

[1]  Jesper Buus Nielsen,et al.  Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case , 2002, CRYPTO.

[2]  Amit Sahai,et al.  Efficient Non-interactive Proof Systems for Bilinear Groups , 2008, EUROCRYPT.

[3]  Marc Fischlin,et al.  A Closer Look at PKI: Security and Efficiency , 2007, Public Key Cryptography.

[4]  Ran Canetti,et al.  The random oracle methodology, revisited , 2000, JACM.

[5]  Hovav Shacham,et al.  Aggregate and Verifiably Encrypted Signatures from Bilinear Maps , 2003, EUROCRYPT.

[6]  Brent Waters,et al.  Compact Group Signatures Without Random Oracles , 2006, EUROCRYPT.

[7]  Yael Tauman Kalai,et al.  On the (In)security of the Fiat-Shamir paradigm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[8]  Aggelos Kiayias,et al.  Group Signatures with Efficient Concurrent Join , 2005, EUROCRYPT.

[9]  Michael K. Reiter,et al.  Alternatives to Non-malleability: Definitions, Constructions, and Applications (Extended Abstract) , 2004, TCC.

[10]  Ran Canetti,et al.  The random oracle methodology, revisited , 2000, JACM.

[11]  Jan Camenisch,et al.  Signature Schemes and Anonymous Credentials from Bilinear Maps , 2004, CRYPTO.

[12]  Marc Joye,et al.  A Practical and Provably Secure Coalition-Resistant Group Signature Scheme , 2000, CRYPTO.

[13]  David Chaum,et al.  Group Signatures , 1991, EUROCRYPT.

[14]  Eike Kiltz,et al.  Chosen-Ciphertext Security from Tag-Based Encryption , 2006, TCC.

[15]  Dongdai Lin,et al.  Shorter Verifier-Local Revocation Group Signatures from Bilinear Maps , 2006, CANS.

[16]  Dan Boneh,et al.  Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups , 2008, Journal of Cryptology.

[17]  Mihir Bellare,et al.  Foundations of Group Signatures: The Case of Dynamic Groups , 2005, CT-RSA.

[18]  Jan Camenisch,et al.  Practical Group Signatures without Random Oracles , 2005, IACR Cryptol. ePrint Arch..

[19]  Mihir Bellare,et al.  An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem , 2004, EUROCRYPT.

[20]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[21]  Jan Camenisch,et al.  Group Signatures: Better Efficiency and New Theoretical Aspects , 2004, SCN.

[22]  Jens Groth,et al.  Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures , 2006, ASIACRYPT.

[23]  Brent Waters,et al.  Full-Domain Subgroup Hiding and Constant-Size Group Signatures , 2007, Public Key Cryptography.

[24]  Mihir Bellare,et al.  Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions , 2003, EUROCRYPT.

[25]  Ran Canetti,et al.  On the Random-Oracle Methodology as Applied to Length-Restricted Signature Schemes , 2004, TCC.

[26]  Hideki Imai,et al.  An Efficient Group Signature Scheme from Bilinear Maps , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[27]  Dan Boneh,et al.  Short Signatures Without Random Oracles , 2004, EUROCRYPT.

[28]  Hovav Shacham,et al.  Short Group Signatures , 2004, CRYPTO.