Contextual and deep learning approaches for retinal image analysis

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[2]  Joseph M. Reinhardt,et al.  Automated method for the identification and analysis of vascular tree structures in retinal vessel network , 2011, Medical Imaging.

[3]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  Remco Duits,et al.  Data-Driven Sub-Riemannian Geodesics in SE(2) , 2015, SSVM.

[5]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[6]  José Manuel Bravo,et al.  A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features , 2011, IEEE Transactions on Medical Imaging.

[7]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[8]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[9]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[10]  Julius Hannink,et al.  Crossing-Preserving Multi-scale Vesselness , 2014, MICCAI.

[11]  Hamid Soltanian-Zadeh,et al.  Sport Video Classification Using an Ensemble Classifier , 2011, 2011 7th Iranian Conference on Machine Vision and Image Processing.

[12]  Giovanna Citti,et al.  The constitution of visual perceptual units in the functional architecture of V1 , 2014, Journal of Computational Neuroscience.

[13]  Remco Duits,et al.  Geometric Connectivity Analysis Based on Edge Co-Occurrences in Retinal Images , 2016 .

[14]  Remco Duits,et al.  Sub-Riemannian Fast Marching in SE(2) , 2015, CIARP.

[15]  Andrew Hunter,et al.  The association between retinal vascular geometry changes and diabetic retinopathy and their role in prediction of progression – an exploratory study , 2014, BMC Ophthalmology.

[16]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  N. Chapman,et al.  Peripheral vascular disease is associated with abnormal arteriolar diameter relationships at bifurcations in the human retina. , 2002, Clinical science.

[18]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[19]  M. Sonka,et al.  Retinal Imaging and Image Analysis. , 2010, IEEE transactions on medical imaging.

[20]  Peter F. Sharp,et al.  Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes , 2008, Diabetes Care.

[21]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[22]  Ramesh Raskar,et al.  Leveraging the crowd for annotation of retinal images , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[23]  S. Palmer,et al.  A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.

[24]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[25]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[26]  Gwénolé Quellec,et al.  Optimal Filter Framework for Automated, Instantaneous Detection of Lesions in Retinal Images , 2011, IEEE Transactions on Medical Imaging.

[27]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[28]  Erik J. Bekkers,et al.  Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[29]  B. H. Romeny,et al.  Curvature Based Biomarkers for Diabetic Retinopathy via Exponential Curve Fits in SE(2) , 2015 .

[30]  Christoph Meinel,et al.  Deep Learning for Medical Image Analysis , 2018, Journal of Pathology Informatics.

[31]  Cheng Li,et al.  Tracing retinal vessel trees by transductive inference , 2014, BMC Bioinformatics.

[32]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[33]  Joachim Weickert,et al.  Fast retinal vessel analysis , 2013, Journal of Real-Time Image Processing.

[34]  Erik J. Bekkers,et al.  Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D , 2017, Journal of Mathematical Imaging and Vision.

[35]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[36]  Bram van Ginneken,et al.  Automatic detection of red lesions in digital color fundus photographs , 2005, IEEE Transactions on Medical Imaging.

[37]  B. Schmauch,et al.  Deep learning approach for diabetic retinopathy screening , 2016 .

[38]  Qiao Hu,et al.  Automated Separation of Binary Overlapping Trees in Low-Contrast Color Retinal Images , 2013, MICCAI.

[39]  Samaneh Abbasi-Sureshjani,et al.  Infrastructure for retinal image analysis , 2016 .

[40]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[41]  P. O S I T I O N S T A T E M E N T,et al.  Diagnosis and Classification of Diabetes Mellitus , 2011, Diabetes Care.

[42]  Remco Duits,et al.  Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging , 2014, Numerical Mathematics: Theory, Methods and Applications.

[43]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[44]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[45]  Luc Van Gool,et al.  Deep Retinal Image Understanding , 2016, MICCAI.

[46]  Dwarikanath Mahapatra,et al.  Retinal Image Quality Classification Using Saliency Maps and CNNs , 2016, MLMI@MICCAI.

[47]  James A. Bednar,et al.  Edge co-occurrences can account for rapid categorization of natural versus animal images , 2015, Scientific Reports.

[48]  Olivier D. Faugeras,et al.  Persistent Neural States: Stationary Localized Activity Patterns in Nonlinear Continuous n-Population, q-Dimensional Neural Networks , 2009, Neural Computation.

[49]  Tien Yin Wong,et al.  Glaucoma detection based on deep convolutional neural network , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[50]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[51]  Stephen Lin,et al.  DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional Random Field , 2016, MICCAI.

[52]  Jiong Zhang,et al.  Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters , 2016, ICIAR.

[53]  T. Wong,et al.  Quantitative Assessment of Early Diabetic Retinopathy Using Fractal Analysis , 2009, Diabetes Care.

[54]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[55]  Hongying Lilian Tang,et al.  Automatic Optic Disc Abnormality Detection in Fundus Images: A Deep Learning Approach , 2016 .

[56]  Gwénolé Quellec,et al.  Deep image mining for diabetic retinopathy screening , 2016, Medical Image Anal..

[57]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[58]  Lili Xu,et al.  A novel method for blood vessel detection from retinal images , 2010, Biomedical engineering online.

[59]  Jiong Zhang,et al.  Stability analysis of fractal dimension in retinal vasculature , 2015 .

[60]  Bashir Al-Diri,et al.  Manual measurement of retinal bifurcation features , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[61]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[62]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[63]  I. Deary,et al.  Retinal image analysis: Concepts, applications and potential , 2006, Progress in Retinal and Eye Research.

[64]  M Zamir,et al.  Arterial branching in man and monkey , 1982, The Journal of general physiology.

[65]  Gwénolé Quellec,et al.  Automated early detection of diabetic retinopathy. , 2010, Ophthalmology.

[66]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[68]  E. Bekkers Retinal image analysis using sub-Riemannian geometry in SE(2) , 2017 .

[69]  L. Florack,et al.  Evolution equations on Gabor transforms and their applications , 2011, 1110.6087.

[70]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[71]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[72]  Jürgen Schmidhuber,et al.  Highway Networks , 2015, ArXiv.

[73]  C. K. Ogden A Source Book Of Gestalt Psychology , 2013 .

[74]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[75]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[76]  Erik J. Bekkers,et al.  Robust and Fast Vessel Segmentation via Gaussian Derivatives in Orientation Scores , 2015, ICIAP.

[77]  Feng Lin,et al.  A Graph-Theoretical Approach for Tracing Filamentary Structures in Neuronal and Retinal Images , 2016, IEEE Transactions on Medical Imaging.

[78]  Maher Kayal,et al.  A Novel Technique for Online Partial Discharge Pattern Recognition in Large Electrical Motors , 2014, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[79]  Remco Duits,et al.  Optic Nerve Head Detection via Group Correlations in Multi-orientation Transforms , 2014, ICIAR.

[80]  Samaneh Abbasi-Sureshjani,et al.  Boosted Exudate Segmentation in Retinal Images Using Residual Nets , 2017, FIFI/OMIA@MICCAI.

[81]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[82]  J. Wainer,et al.  Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images , 2014, PloS one.

[83]  Oscar J. Perdomo,et al.  A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema , 2016 .

[84]  Samaneh Abbasi-Sureshjani,et al.  Bridging disconnected curvilinear structures via numerical evolutions of completion process in ophthalmologic images , 2016 .

[85]  Milan Sonka,et al.  Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach , 2011, IEEE Transactions on Medical Imaging.

[86]  Andrew Hunter,et al.  Retinal vascular geometry: Examination of the changes between the early stages of diabetes and first year of diabetic retinopathy , 2015, 2015 Science and Information Conference (SAI).

[87]  Rasmus Larsen,et al.  Convolution approach for feature detection in topological skeletons obtained from vascular patterns , 2011, 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM).

[88]  Marcus Fruttiger,et al.  Development of the retinal vasculature , 2007, Angiogenesis.

[89]  Gretchen A. Stevens,et al.  Causes of vision loss worldwide, 1990-2010: a systematic analysis. , 2013, The Lancet. Global health.

[90]  A. Sarti,et al.  From neural oscillations to variational problems in the visual cortex , 2003, Journal of Physiology-Paris.

[91]  Remco Duits,et al.  Line Enhancement and Completion via Linear Left Invariant Scale Spaces on SE(2) , 2009, SSVM.

[92]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[93]  Armin Kanitsar,et al.  Vessel tracking in peripheral CTA datasets-an overview , 2001, Proceedings Spring Conference on Computer Graphics.

[94]  Pascal Fua,et al.  Automated Reconstruction of Dendritic and Axonal Trees by Global Optimization with Geometric Priors , 2011, Neuroinformatics.

[95]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[96]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[97]  Julius Hannink,et al.  Locally Adaptive Frames in the Roto-Translation Group and Their Applications in Medical Imaging , 2015, Journal of Mathematical Imaging and Vision.

[98]  George Azzopardi,et al.  Trainable COSFIRE filters for vessel delineation with application to retinal images , 2015, Medical Image Anal..

[99]  Julius Hannink,et al.  Brain-inspired algorithms for retinal image analysis , 2016, Machine Vision and Applications.

[100]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[101]  András Hajdu,et al.  Automatic exudate detection using active contour model and regionwise classification , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[102]  W. Hoffman The Lie algebra of visual perception , 1966 .

[103]  Domenico Tegolo,et al.  Unsupervised recognition of retinal vascular junction points , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[104]  Juan Xu,et al.  Retinal vessel segmentation on SLO image , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[105]  Samaneh Abbasi-Sureshjani,et al.  Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images , 2015, ICIAR.

[106]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[107]  Laurent D. Cohen,et al.  Fast Object Segmentation by Growing Minimal Paths from a Single Point on 2D or 3D Images , 2009, Journal of Mathematical Imaging and Vision.

[108]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[109]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Pascal Fua,et al.  Delineating trees in noisy 2D images and 3D image-stacks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[111]  Ghassan Hamarneh,et al.  Live-Vessel: Extending Livewire for Simultaneous Extraction of Optimal Medial and Boundary Paths in Vascular Images , 2007, MICCAI.

[112]  Marta Favali,et al.  Local and Global Gestalt Laws: A Neurally Based Spectral Approach , 2015, Neural Computation.

[113]  Kostas Delibasis,et al.  Automatic model-based tracing algorithm for vessel segmentation and diameter estimation , 2010, Comput. Methods Programs Biomed..

[114]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[115]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Jean-Paul Gauthier,et al.  Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion , 2010, SIAM J. Control. Optim..

[117]  Ana Maria Mendonça,et al.  An Automatic Graph-Based Approach for Artery/Vein Classification in Retinal Images , 2014, IEEE Transactions on Image Processing.

[118]  Giovanna Citti,et al.  The symplectic structure of the primary visual cortex , 2008, Biological Cybernetics.

[119]  Andrew Hunter,et al.  Measurement of retinal vessel widths from fundus images based on 2-D modeling , 2004, IEEE Transactions on Medical Imaging.

[120]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[121]  Samaneh Abbasi-Sureshjani,et al.  Curvature Integration in a 5D Kernel for Extracting Vessel Connections in Retinal Images , 2016, IEEE Transactions on Image Processing.

[122]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[123]  Carlo Tomasi,et al.  Retinal Artery-Vein Classification via Topology Estimation , 2015, IEEE Transactions on Medical Imaging.

[124]  Benjamin M. Good,et al.  Crowdsourcing for bioinformatics , 2013, Bioinform..

[125]  B. M. ter Haar Romeny,et al.  Reliability of Using Retinal Vascular Fractal Dimension as a Biomarker in the Diabetic Retinopathy Detection , 2016, Journal of ophthalmology.

[126]  Mingchen Gao,et al.  Deep vessel tracking: A generalized probabilistic approach via deep learning , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[127]  K. Horsfield,et al.  Morphometry of the Small Pulmonary Arteries in Man , 1978, Circulation research.

[128]  R. Duits,et al.  The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group , 2007 .

[129]  Rajiv Raman,et al.  Retinal Sensitivity over Hard Exudates in Diabetic Retinopathy , 2015, Journal of ophthalmic & vision research.

[130]  Bram van Ginneken,et al.  Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images , 2016, IEEE Transactions on Medical Imaging.

[131]  B. Klein,et al.  Global Prevalence and Major Risk Factors of Diabetic Retinopathy , 2012, Diabetes Care.

[132]  M. Abràmoff,et al.  Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. , 2016, Investigative ophthalmology & visual science.

[133]  P Gain,et al.  Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. , 2010, Diabetes & metabolism.

[134]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[135]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[136]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[137]  M. Zamir The Physics of Coronary Blood Flow , 2005 .

[138]  S. Zucker,et al.  Differential Geometry from the Frenet Point of View: Boundary Detection, Stereo, Texture and Color , 2006, Handbook of Mathematical Models in Computer Vision.

[139]  Philippe Burlina,et al.  Detection of age-related macular degeneration via deep learning , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[140]  G. Quellec,et al.  Automated analysis of retinal images for detection of referable diabetic retinopathy. , 2013, JAMA ophthalmology.

[141]  B. H. Romeny,et al.  Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.

[142]  Bunyarit Uyyanonvara,et al.  Blood vessel segmentation methodologies in retinal images - A survey , 2012, Comput. Methods Programs Biomed..

[143]  Badrinath Roysam,et al.  Improved Detection of the Central Reflex in Retinal Vessels Using a Generalized Dual-Gaussian Model and Robust Hypothesis Testing , 2008, IEEE Transactions on Information Technology in Biomedicine.

[144]  Paul Mitchell,et al.  The eye in hypertension , 2007, The Lancet.

[145]  François Fleuret,et al.  Importance Sampling Tree for Large-scale Empirical Expectation , 2016, ICML.

[146]  L. Sherwood Human Physiology : From Cells to Systems , 1989 .

[147]  Feng Lin,et al.  Tracing Retinal Blood Vessels by Matrix-Forest Theorem of Directed Graphs , 2014, MICCAI.

[148]  R. Klein,et al.  Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. , 1999, Ophthalmology.

[149]  O. Chutatape,et al.  Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[150]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[151]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[152]  Josien P. W. Pluim,et al.  Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores , 2016, IEEE Transactions on Medical Imaging.

[153]  Enrico Grisan,et al.  Luminosity and contrast normalization in retinal images , 2005, Medical Image Anal..

[154]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[155]  Hiroshi Fujita,et al.  Determination of cup-to-disc ratio of optical nerve head for diagnosis of glaucoma on stereo retinal fundus image pairs , 2009, Medical Imaging.

[156]  P. Burlina,et al.  Automated classification of severity of age-related macular degeneration from fundus photographs. , 2013, Investigative ophthalmology & visual science.

[157]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[158]  E. Franken Enhancement of crossing elongated structures in images , 2008 .

[159]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[160]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[161]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[162]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[163]  Sven Loncaric,et al.  Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research , 2013, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA).

[164]  M Zamir,et al.  Distributing and delivering vessels of the human heart , 1988, The Journal of general physiology.

[165]  Gwénolé Quellec,et al.  Automatic detection of referral patients due to retinal pathologies through data mining , 2016, Medical Image Anal..

[166]  R. Klein,et al.  Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study , 2001, The Lancet.

[167]  Gabriel J. Brostow,et al.  Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks , 2016, LABELS/DLMIA@MICCAI.

[168]  C D Murray,et al.  The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[169]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[170]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[171]  Angelos A Kalitzeos,et al.  Retinal vessel tortuosity measures and their applications. , 2013, Experimental eye research.

[172]  Ana Maria Mendonça,et al.  Optic disc segmentation using the sliding band filter , 2015, Comput. Biol. Medicine.

[173]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[174]  J. J. Zhang Multi-orientation analysis of retinal images for computer-aided diagnosis , 2017 .

[175]  C. Rowe,et al.  Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease , 2013, Translational Psychiatry.

[176]  Matthew D. Davis,et al.  Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. , 2003, Ophthalmology.

[177]  Roberto Marcondes Cesar Junior,et al.  Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification , 2005, IEEE Transactions on Medical Imaging.

[178]  Bram van Ginneken,et al.  Comparative study of retinal vessel segmentation methods on a new publicly available database , 2004, SPIE Medical Imaging.

[179]  Remco Duits,et al.  A Multi-Orientation Analysis Approach to Retinal Vessel Tracking , 2012, Journal of Mathematical Imaging and Vision.

[180]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[181]  M Zamir,et al.  Nonsymmetrical bifurcations in arterial branching , 1978, The Journal of general physiology.

[182]  Pascal Fua,et al.  Automated reconstruction of tree structures using path classifiers and Mixed Integer Programming , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[183]  Jian Sun,et al.  Convolutional neural networks at constrained time cost , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[184]  Qiao Hu,et al.  Automated construction of arterial and venous trees in retinal images , 2015, Journal of medical imaging.

[185]  Andrew Hunter,et al.  An Active Contour Model for Segmenting and Measuring Retinal Vessels , 2009, IEEE Transactions on Medical Imaging.

[186]  A. Sarti,et al.  A model of natural image edge co-occurrence in the rototranslation group. , 2010, Journal of vision.

[187]  Shruti Aggarwal,et al.  A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images , 2016, Medical Image Anal..

[188]  D. Mumford Elastica and Computer Vision , 1994 .

[189]  Giovanna Citti,et al.  Cortical Spatiotemporal Dimensionality Reduction for Visual Grouping , 2014, Neural Computation.

[190]  Remco Duits,et al.  Retrieving challenging vessel connections in retinal images by line co-occurrence statistics , 2017, Biological Cybernetics.

[191]  Cheng Li,et al.  Automated Tracing of Retinal Blood Vessels Using Graphical Models , 2013, SCIA.

[192]  Chia-Ling Tsai,et al.  Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images , 2004, IEEE Transactions on Information Technology in Biomedicine.

[193]  George Azzopardi,et al.  Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters , 2013, Pattern Recognit. Lett..

[194]  Samaneh Abbasi-Sureshjani,et al.  Analysis of Vessel Connectivities in Retinal Images by Cortically Inspired Spectral Clustering , 2015, Journal of Mathematical Imaging and Vision.

[195]  Samaneh Abbasi-Sureshjani,et al.  Exploratory Study on Direct Prediction of Diabetes Using Deep Residual Networks , 2017 .

[196]  Francis K. H. Quek,et al.  Vessel extraction in medical images by wave-propagation and traceback , 2001, IEEE Transactions on Medical Imaging.

[197]  Joachim M. Buhmann,et al.  Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation , 2017, Comput. Medical Imaging Graph..

[198]  Changming Sun,et al.  Junction detection for linear structures based on Hessian, correlation and shape information , 2012, Pattern Recognit..

[199]  Remco Duits,et al.  A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2) , 2015, SIAM J. Imaging Sci..

[200]  K. Viswanath,et al.  Diabetic retinopathy: clinical findings and management. , 2003, Community eye health.

[201]  Sven Loncaric,et al.  Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion , 2016, Comput. Methods Programs Biomed..

[202]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[203]  Carlo Tomasi,et al.  Tree Topology Estimation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[204]  S. Sutherland Eye, brain and vision , 1993, Nature.

[205]  T. Wonnacott,et al.  Relation between diameter and flow in major branches of the arch of the aorta. , 1992, Journal of biomechanics.

[206]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[207]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[208]  Tien Yin Wong,et al.  Retinal Arteriolar Narrowing Is Associated With 5-Year Incident Severe Hypertension: The Blue Mountains Eye Study , 2004, Hypertension.

[209]  A. Ruggeri,et al.  Quantitative description of vessel features in hypertensive retinopathy fundus images , 2001 .

[210]  Manuel G. Penedo,et al.  Automatic detection and characterisation of retinal vessel tree bifurcations and crossovers in eye fundus images , 2011, Comput. Methods Programs Biomed..

[211]  Amir Akramin Shafie,et al.  Vascular intersection detection in retina fundus images using a new hybrid approach , 2010, Comput. Biol. Medicine.

[212]  Samaneh Abbasi-Sureshjani,et al.  Retinal health information and notification system (RHINO) , 2017, Medical Imaging.

[213]  HU FRANKB.,et al.  Globalization of Diabetes , 2011, Diabetes Care.

[214]  G. Hutchins,et al.  Vessel Caliber and Branch‐Angle of Human Coronary Artery Branch‐Points , 1976, Circulation research.

[215]  Gwénolé Quellec,et al.  Exudate detection in color retinal images for mass screening of diabetic retinopathy , 2014, Medical Image Anal..

[216]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[217]  H. Führ Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .

[218]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[219]  Giovanna Citti,et al.  Image Completion Using a Diffusion Driven Mean Curvature Flowin A Sub-Riemannian Space , 2008, VISAPP.

[220]  Katja Bühler,et al.  Geometric Methods for Vessel Visualization and Quantification — A Survey , 2004 .

[221]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[222]  Hyo-Eun Kim,et al.  Self-Transfer Learning for Fully Weakly Supervised Object Localization , 2016, ArXiv.

[223]  B. Wasan,et al.  Vascular network changes in the retina with age and hypertension , 1995, Journal of hypertension.

[224]  Li Cheng,et al.  Synthesizing Filamentary Structured Images with GANs , 2017, ArXiv.

[225]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .

[226]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[227]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[228]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[229]  Peter F. Sharp,et al.  Automated microaneurysm detection using local contrast normalization and local vessel detection , 2006, IEEE Transactions on Medical Imaging.

[230]  Syed Amin Tabish,et al.  Is Diabetes Becoming the Biggest Epidemic of the Twenty-first Century? , 2007, International journal of health sciences.

[231]  P. Dagnelie,et al.  The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities , 2014, European Journal of Epidemiology.