Simulated Self-motion in a Visual Gravity Field: Sensitivity to Vertical and Horizontal

Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical).

[1]  Florentin Wörgötter,et al.  A cortical architecture on parallel hardware for motion processing in real time. , 2010, Journal of vision.

[2]  Charles J. Duffy,et al.  Cortical Neurons Encoding Path and Place: Where You Go Is Where You Are , 2002, Science.

[3]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[4]  Lutz Jäncke,et al.  Feeling Present in Arousing Virtual Reality Worlds: Prefrontal Brain Regions Differentially Orchestrate Presence Experience in Adults and Children , 2008, Frontiers in human neuroscience.

[5]  K. Jeffery,et al.  Anisotropic encoding of three-dimensional space by place cells and grid cells , 2011, Nature Neuroscience.

[6]  François Mauguière,et al.  Clinical Manifestations of Insular Lobe Seizures: A Stereo‐electroencephalographic Study , 2004 .

[7]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[8]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[9]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[10]  Richard S. J. Frackowiak,et al.  Knowing where and getting there: a human navigation network. , 1998, Science.

[11]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[12]  G A Orban,et al.  Imaging image processing in the human brain , 2001, Current opinion in neurology.

[13]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[14]  Yoshiharu Sakata,et al.  The Vestibular Cortex , 2002 .

[15]  Richard S. J. Frackowiak,et al.  Identification of the central vestibular projections in man: a positron emission tomography activation study , 2004, Experimental Brain Research.

[16]  M. Ohmi Egocentric perception through interaction among many sensory systems. , 1996, Brain research. Cognitive brain research.

[17]  T. Brandt,et al.  Cortical visual-vestibular interaction for spatial orientation and self-motion perception. , 1999, Current opinion in neurology.

[18]  Dora E Angelaki,et al.  Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow , 2010, Journal of Neuroscience.

[19]  H. Duvernoy,et al.  The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply , 1999 .

[20]  F. Lacquaniti,et al.  The weight of time: gravitational force enhances discrimination of visual motion duration. , 2011, Journal of vision.

[21]  Richard S. Frackowiak,et al.  Neural Correlates of Visual-Motion Perception as Object- or Self-motion , 2002, NeuroImage.

[22]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[23]  W. H. Warren The dynamics of perception and action. , 2006, Psychological review.

[24]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[25]  Mark W Greenlee,et al.  Neural correlates of visually induced self-motion illusion in depth. , 2008, Cerebral cortex.

[26]  G. Orban,et al.  Neural mechanisms of understanding rational actions: middle temporal gyrus activation by contextual violation. , 2011, Cerebral cortex.

[27]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[28]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[29]  Vincenzo Maffei,et al.  Vestibular nuclei and cerebellum put visual gravitational motion in context. , 2008, Journal of neurophysiology.

[30]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[31]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[32]  F. Mast,et al.  The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis , 2012, Neuroscience.

[33]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[34]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[35]  M Dieterich,et al.  Vestibular cortex lesions affect the perception of verticality , 1994, Annals of neurology.

[36]  Guy Orban,et al.  Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study. , 2010, Journal of neurophysiology.

[37]  O. Blanke,et al.  The thalamocortical vestibular system in animals and humans , 2011, Brain Research Reviews.

[38]  L. Chalupa,et al.  The new visual neurosciences , 2014 .

[39]  G. Orban,et al.  Functional mapping of motion regions in human and non-human primates , 2014 .

[40]  W. Meck,et al.  Neuroanatomical and Neurochemical Substrates of Timing , 2011, Neuropsychopharmacology.

[41]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[42]  Simon B. Eickhoff,et al.  Meta-analytical definition and functional connectivity of the human vestibular cortex , 2012, NeuroImage.

[43]  J. Lackner,et al.  Human orientation and movement control in weightless and artificial gravity environments , 2000, Experimental Brain Research.

[44]  Soojin Park,et al.  Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception , 2009, NeuroImage.

[45]  Francesco Lacquaniti,et al.  Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues. , 2005, Journal of neurophysiology.

[46]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[47]  Dora E Angelaki,et al.  Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area , 2006, The Journal of Neuroscience.

[48]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[49]  Francesco Lacquaniti,et al.  When Up Is Down in 0g: How Gravity Sensing Affects the Timing of Interceptive Actions , 2012, The Journal of Neuroscience.

[50]  Jeffrey S. Taube,et al.  Origins of landmark encoding in the brain , 2011, Trends in Neurosciences.

[51]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[52]  Christopher R Fetsch,et al.  Dynamic Reweighting of Visual and Vestibular Cues during Self-Motion Perception , 2009, The Journal of Neuroscience.

[53]  Marianne Dieterich,et al.  Neural correlates of disturbed perception of verticality , 2012, Neurology.

[54]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[55]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[56]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[57]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[58]  N. Schmajuk Cognitive maps , 1998 .

[59]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[60]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[61]  Maria V. Sanchez-Vives,et al.  From presence to consciousness through virtual reality , 2005, Nature Reviews Neuroscience.

[62]  T. Brandt,et al.  Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). , 2001, Journal of neurophysiology.

[63]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[64]  A. Antal,et al.  The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion , 2008, Visual Neuroscience.

[65]  K. Thilo,et al.  Vestibular inputs to human motion-sensitive visual cortex. , 2012, Cerebral cortex.

[66]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[67]  F. Lacquaniti,et al.  Representation of Visual Gravitational Motion in the Human Vestibular Cortex , 2005, Science.

[68]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[69]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[70]  F. Lacquaniti,et al.  Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. , 2004, Journal of neurophysiology.

[71]  G. A. Orban,et al.  Human Brain Regions Involved in Heading Estimation , 2001, The Journal of Neuroscience.

[72]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[73]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[74]  S. Bunge How we use rules to select actions: A review of evidence from cognitive neuroscience , 2004, Cognitive, affective & behavioral neuroscience.

[75]  Lionel Carmant,et al.  Revisiting the role of the insula in refractory partial epilepsy , 2009, Epilepsia.

[76]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[77]  T. Brandt,et al.  The Vestibular Cortex: Its Locations, Functions, and Disorders , 1999, Annals of the New York Academy of Sciences.

[78]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[79]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[80]  D. Angelaki,et al.  Vestibular system: the many facets of a multimodal sense. , 2008, Annual review of neuroscience.

[81]  F. Lacquaniti,et al.  Visuo-motor coordination and internal models for object interception , 2009, Experimental Brain Research.

[82]  Martin Faint,et al.  Does the brain model newton’s laws? , 2001 .