Hyper-heuristics: a survey of the state of the art

Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of automating the design of heuristic methods to solve hard computational search problems. An underlying strategic research challenge is to develop more generally applicable search methodologies. The term hyper-heuristic is relatively new; it was first used in 2000 to describe heuristics to choose heuristics in the context of combinatorial optimisation. However, the idea of automating the design of heuristics is not new; it can be traced back to the 1960s. The definition of hyper-heuristics has been recently extended to refer to a search method or learning mechanism for selecting or generating heuristics to solve computational search problems. Two main hyper-heuristic categories can be considered: heuristic selection and heuristic generation. The distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or heuristic components) rather than directly on the search space of solutions to the underlying problem that is being addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including their origin and intellectual roots, a detailed account of the main types of approaches, and an overview of some related areas. Current research trends and directions for future research are also discussed.

[1]  Frédéric Saubion,et al.  A dynamic island model for adaptive operator selection , 2012, GECCO '12.

[2]  A. Sima Etaner-Uyar,et al.  Heuristics for car setup optimisation in TORCS , 2012, 2012 12th UK Workshop on Computational Intelligence (UKCI).

[3]  Nhu Binh Ho,et al.  Evolving dispatching rules for solving the flexible job-shop problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[4]  Peter I. Cowling,et al.  Integrating human abilities with the power of automated scheduling systems: representational epistemological interface design , 2003 .

[5]  Michèle Sebag,et al.  Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection , 2009, 2009 IEEE Congress on Evolutionary Computation.

[6]  Penousal Machado,et al.  On the Evolution of Evolutionary Algorithms , 2004, EuroGP.

[7]  Berna Kiraz,et al.  Hyper-heuristic approaches for the dynamic generalized assignment problem , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[8]  Edmund K. Burke,et al.  The practice and theory of automated timetabling , 2014, Ann. Oper. Res..

[9]  Mauro Birattari,et al.  Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.

[10]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[11]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.

[12]  Rajeev Kumar,et al.  Evolution of hyperheuristics for the biobjective 0/1 knapsack problem by multiobjective genetic programming , 2008, GECCO '08.

[13]  Ville Tirronen,et al.  Fitness diversity based adaptation in Multimeme Algorithms:A comparative study , 2007, 2007 IEEE Congress on Evolutionary Computation.

[14]  Tobias Friedrich,et al.  Genetic and Evolutionary Computation , 2015, Theoretical Computer Science.

[15]  Riccardo Poli,et al.  Grammar-based genetic programming for timetabling , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  K. Verbeeck,et al.  A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete , 2011 .

[17]  Jorge Pinho de Sousa,et al.  Metaheuristics: Computer Decision-Making , 2010 .

[18]  Graham Kendall,et al.  An Ant Based Hyper-heuristic for the Travelling Tournament Problem , 2007, 2007 IEEE Symposium on Computational Intelligence in Scheduling.

[19]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[20]  Ben Paechter,et al.  A Hyper-Heuristic Classifier for One Dimensional Bin Packing Problems: Improving Classification Accuracy by Attribute Evolution , 2012, PPSN.

[21]  Luca Di Gaspero,et al.  A Reinforcement Learning approach for the Cross-Domain Heuristic Search Challenge , 2011 .

[22]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[23]  I. P. Norenkov,et al.  Solving Scheduling Problems via Evolutionary Methods for Rule Sequence Optimization , 1998 .

[24]  Luca Di Gaspero,et al.  Evaluation of a Family of Reinforcement Learning Cross-Domain Optimization Heuristics , 2012, LION.

[25]  G. Dueck New optimization heuristics , 1993 .

[26]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[27]  Matthew R. Hyde,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving Two Dimensional Strip Packing Heuristics , 2009 .

[28]  David Leake,et al.  Case-Based Reasoning: Experiences, Lessons and Future Directions , 1996 .

[29]  David Pisinger,et al.  A general heuristic for vehicle routing problems , 2007, Comput. Oper. Res..

[30]  Riccardo Poli,et al.  Toward subheuristic search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[31]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[32]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[33]  Edmund K. Burke,et al.  An ant algorithm hyperheuristic for the project presentation scheduling problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Frédéric Saubion,et al.  Autonomous operator management for evolutionary algorithms , 2010, J. Heuristics.

[35]  Wilfried Jakob,et al.  Towards an Adaptive Multimeme Algorithm for Parameter Optimisation Suiting the Engineers' Needs , 2006, PPSN.

[36]  Gabriela Ochoa,et al.  Adaptive Evolutionary Algorithms and Extensions to the HyFlex Hyper-heuristic Framework , 2012, PPSN.

[37]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[38]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[39]  Graham Kendall,et al.  A Monte Carlo Hyper-Heuristic To Optimise Component Placement Sequencing For Multi Head Placement Machine , 2003 .

[40]  Joaquín Bautista,et al.  A scatter search based hyper-heuristic for sequencing a mixed-model assembly line , 2010, J. Heuristics.

[41]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[42]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[43]  Frédéric Saubion,et al.  A Compass to Guide Genetic Algorithms , 2008, PPSN.

[44]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[45]  Alex S. Fukunaga,et al.  Automated discovery of composite SAT variable-selection heuristics , 2002, AAAI/IAAI.

[46]  Graham Kendall,et al.  Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation , 2008, J. Oper. Res. Soc..

[47]  Li-Chen Fu,et al.  A VNS-based hyper-heuristic with adaptive computational budget of local search , 2012, 2012 IEEE Congress on Evolutionary Computation.

[48]  Kent McClymont,et al.  Markov chain hyper-heuristic (MCHH): an online selective hyper-heuristic for multi-objective continuous problems , 2011, GECCO '11.

[49]  Peter I. Cowling,et al.  Binary Exponential Back Off for Tabu Tenure in Hyperheuristics , 2009, EvoCOP.

[50]  Peter Ross,et al.  Some Observations about GA-Based Exam Timetabling , 1997, PATAT.

[51]  Natalio Krasnogor,et al.  Toward truly "memetic" memetic algorithms: discussion and proof of concepts , 2002 .

[52]  Hishammuddin Asmuni,et al.  Fuzzy Multiple Heuristic Orderings for Examination Timetabling , 2004, PATAT.

[53]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[54]  Sanja Petrovic,et al.  A cooperative distributed Hyper-Heuristic framework for scheduling , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[55]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[56]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[57]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[58]  Wilfried Jakob HyGLEAM - An Approach to Generally Applicable Hybridization of Evolutionary Algorithms , 2002, PPSN.

[59]  Ender Özcan,et al.  Hill Climbers and Mutational Heuristics in Hyperheuristics , 2006, PPSN.

[60]  Michel Gendreau,et al.  Memory Length in Hyper-heuristics: An Empirical Study , 2007, 2007 IEEE Symposium on Computational Intelligence in Scheduling.

[61]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[62]  Rolf Drechsler,et al.  Learning heuristics by genetic algorithms , 1995, ASP-DAC '95.

[63]  Graham Kendall,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics , 2010, IEEE Transactions on Evolutionary Computation.

[64]  Frédéric Saubion,et al.  An exploration-exploitation compromise-based adaptive operator selection for local search , 2012, GECCO '12.

[65]  Terence General Chair-Moore Jason H. Soule,et al.  Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion , 2012 .

[66]  Patrick De Causmaecker,et al.  A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice , 2012, J. Sched..

[67]  Jonathan Gratch,et al.  Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study , 1996, J. Artif. Intell. Res..

[68]  Peter I. Cowling,et al.  Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling , 2007, EvoCOP.

[69]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[70]  Ender Özcan,et al.  Improving the performance of vector hyper-heuristics through local search , 2012, GECCO '12.

[71]  María Cristina Riff,et al.  Collaboration Between Hyperheuristics to Solve Strip-Packing Problems , 2007, IFSA.

[72]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[73]  Alex M. Andrew,et al.  Modern Heuristic Search Methods , 1998 .

[74]  Riccardo Poli,et al.  Subheuristic search and scalability in a hyperheuristic , 2008, GECCO '08.

[75]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[76]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[77]  Mark Johnston,et al.  A genetic programming based hyper-heuristic approach for combinatorial optimisation , 2011, GECCO '11.

[78]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[79]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[80]  David Meignan,et al.  Coalition-based metaheuristic: a self-adaptive metaheuristic using reinforcement learning and mimetism , 2010, J. Heuristics.

[81]  R. Storer,et al.  New search spaces for sequencing problems with application to job shop scheduling , 1992 .

[82]  P. Cowling,et al.  A Parameter-Free Hyperheuristic for Scheduling a Sales Summit , 2002 .

[83]  A. Sima Etaner-Uyar,et al.  Heuristic selection in a multi-phase hybrid approach for dynamic environments , 2012, 2012 12th UK Workshop on Computational Intelligence (UKCI).

[84]  Peter Ross,et al.  A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems , 1994, ECAI.

[85]  Mauro Birattari,et al.  The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .

[86]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[87]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[88]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[89]  E. Burke,et al.  Hybrid Graph Heuristics within a Hyper-Heuristic Approach to Exam Timetabling Problems , 2005 .

[90]  Edmund K. Burke,et al.  An Improved Choice Function Heuristic Selection for Cross Domain Heuristic Search , 2012, PPSN.

[91]  Saïd Salhi,et al.  Hyper-heuristic approaches for the response time variability problem , 2011, Eur. J. Oper. Res..

[92]  Alex S. Fukunaga,et al.  Evolving Local Search Heuristics for SAT Using Genetic Programming , 2004, GECCO.

[93]  Edmund K. Burke,et al.  Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems , 2009, J. Oper. Res. Soc..

[94]  Peter I. Cowling,et al.  Mining the data from a hyperheuristic approach using associative classification , 2008, Expert Syst. Appl..

[95]  Arne Løkketangen,et al.  Generating meta-heuristic optimization code using ADATE , 2010, J. Heuristics.

[96]  S. Mary Saira Bhanu,et al.  A Hyper-Heuristic Approach for Efficient Resource Scheduling in Grid , 2008, Int. J. Comput. Commun. Control.

[97]  Raymond S. K. Kwan,et al.  Distributed Choice Function Hyper-heuristics for Timetabling and Scheduling , 2004, PATAT.

[98]  Peter I. Cowling,et al.  Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework , 2005, EvoCOP.

[99]  Yogesh Kumar Dwivedi,et al.  A profile of OR research and practice published in the Journal of the Operational Research Society , 2010, J. Oper. Res. Soc..

[100]  María Cristina Riff,et al.  DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic , 2010, J. Heuristics.

[101]  Carlos Cotta,et al.  Adaptive and multilevel metaheuristics , 2008 .

[102]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[103]  Peter Ross,et al.  Solving a Real-World Problem Using an Evolving Heuristically Driven Schedule Builder , 1998, Evolutionary Computation.

[104]  Graham Kendall,et al.  A hyper-heuristic approach to sequencing by hybridization of DNA sequences , 2013, Ann. Oper. Res..

[105]  Matthias Fuchs,et al.  High Performance ATP Systems by Combining Several AI Methods , 1997, IJCAI.

[106]  Naim Dahnoun,et al.  Studies in Computational Intelligence , 2013 .

[107]  Rajeev Kumar,et al.  Multiobjective genetic programming approach to evolving heuristics for the bounded diameter minimum spanning tree problem: MOGP for BDMST , 2009, GECCO.

[108]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[109]  Graham Kendall,et al.  Scheduling English Football Fixtures over the Holiday Period Using Hyper-heuristics , 2010, PPSN.

[110]  Riccardo Poli,et al.  Linear genetic programming of parsimonious metaheuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[111]  Steven Minton,et al.  Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.

[112]  Graham Kendall,et al.  Exploring Hyper-heuristic Methodologies with Genetic Programming , 2009 .

[113]  John R. Woodward,et al.  Hyper-Heuristics , 2015, GECCO.

[114]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[115]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[116]  Nhu Binh Ho,et al.  Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems , 2008, Comput. Ind. Eng..

[117]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[118]  Teofilo F. Gonzalez,et al.  Reactive Search: Machine Learning for Memory-Based Heuristics , 2007 .

[119]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[120]  Rudolf F. Albrecht,et al.  Artificial Neural Nets and Genetic Algorithms , 1995, Springer Vienna.

[121]  Jens Gottlieb,et al.  Evolutionary Computation in Combinatorial Optimization , 2006, Lecture Notes in Computer Science.

[122]  Peter Ross,et al.  Peckish Initialisation Strategies for Evolutionary Timetabling , 1995, PATAT.

[123]  Edmund K. Burke,et al.  Examination timetabling using late acceptance hyper-heuristics , 2009, 2009 IEEE Congress on Evolutionary Computation.

[124]  Graham Kendall,et al.  Automating the Packing Heuristic Design Process with Genetic Programming , 2012, Evolutionary Computation.

[125]  Patrick De Causmaecker,et al.  An Intelligent Hyper-Heuristic Framework for CHeSC 2011 , 2012, LION.

[126]  Riccardo Poli,et al.  Self-adaptive hyperheuristic and greedy search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[127]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[128]  David Joslin,et al.  "Squeaky Wheel" Optimization , 1998, AAAI/IAAI.

[129]  Kathryn A. Dowsland,et al.  General Cooling Schedules for a Simulated Annealing Based Timetabling System , 1995, PATAT.

[130]  Peter Ross,et al.  Hyper-heuristics applied to class and exam timetabling problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[131]  Peter I. Cowling,et al.  Hyperheuristics for managing a large collection of low level heuristics to schedule personnel , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[132]  Natalio Krasnogor,et al.  Emergence of profitable search strategies based on a simple inheritance mechanism , 2001 .

[133]  Hongbin Dong,et al.  Pure Strategy or Mixed Strategy? - An Initial Comparison of Their Asymptotic Convergence Rate and Asymptotic Hitting Time , 2011, EvoCOP.

[134]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.

[135]  Edmund K. Burke,et al.  A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation , 2007, Eur. J. Oper. Res..

[136]  A. Sima Etaner-Uyar,et al.  A Hyper-Heuristic Approach for the Unit Commitment Problem , 2010, EvoApplications.

[137]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[138]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[139]  Elizabeth León Guzman,et al.  A hyper-heuristic approach to design and tuning heuristic methods for web document clustering , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[140]  Kate Smith-Miles,et al.  Towards insightful algorithm selection for optimisation using meta-learning concepts , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[141]  Erwin Pesch,et al.  Evolution based learning in a job shop scheduling environment , 1995, Comput. Oper. Res..

[142]  Graham Kendall,et al.  An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[143]  Graham Kendall,et al.  Channel assignment in cellular communication using a great deluge hyper-heuristic , 2004, Proceedings. 2004 12th IEEE International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955).

[144]  Peter Ross,et al.  Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems , 2010, Ann. Oper. Res..

[145]  Vincenzo Cutello,et al.  Parallel Problem Solving from Nature - PPSN XII , 2012, Lecture Notes in Computer Science.

[146]  H. Terashima-Marín,et al.  Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .

[147]  C. Kenyon Best-fit bin-packing with random order , 1996, SODA '96.

[148]  Jim Smith,et al.  Protein structure prediction with co-evolving memetic algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[149]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[150]  Riccardo Poli,et al.  Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.

[151]  Nelishia Pillay,et al.  An analysis of representations for hyper-heuristics for the uncapacitated examination timetabling problem in a genetic programming system , 2008, SAICSIT '08.

[152]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[153]  Katja Verbeeck,et al.  A New Learning Hyper-heuristic for the Traveling Tournament Problem , 2009 .

[154]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[155]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[156]  Saman P. Amarasinghe,et al.  Meta optimization: improving compiler heuristics with machine learning , 2003, PLDI '03.

[157]  Kenneth Sörensen,et al.  Adaptive and Multilevel Metaheuristics , 2008, Adaptive and Multilevel Metaheuristics.

[158]  Tom Holvoet,et al.  Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems , 2012, GECCO '12.

[159]  Michèle Sebag,et al.  Extreme: dynamic multi-armed bandits for adaptive operator selection , 2009, GECCO '09.

[160]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[161]  Graham Kendall,et al.  Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one , 2007, GECCO '07.

[162]  Jim Smith,et al.  Co-evolving Memetic Algorithms: Initial Investigations , 2002, PPSN.

[163]  Peter Ross,et al.  Constructive hyper-heuristics in class timetabling , 2005, 2005 IEEE Congress on Evolutionary Computation.

[164]  P. Cowling,et al.  Perturbation based variable neighbourhood search in heuristic space for examination timetabling problem. , 2003 .

[165]  E. Burke,et al.  A Late Acceptance Strategy in Hill-Climbing for Exam Timetabling Problems , 2008 .

[166]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[167]  Uwe Aickelin,et al.  An Evolutionary Squeaky Wheel Optimization Approach to Personnel Scheduling , 2009, IEEE Trans. Evol. Comput..

[168]  Riccardo Poli,et al.  There Is a Free Lunch for Hyper-Heuristics, Genetic Programming and Computer Scientists , 2009, EuroGP.

[169]  G. Kendall,et al.  Channel assignment optimisation using a hyper-heuristic , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[170]  Sanja Petrovic,et al.  A new dispatching rule based genetic algorithm for the multi-objective job shop problem , 2010, J. Heuristics.

[171]  Carlos Henggeler Antunes,et al.  A multi-objective simulated annealing approach to reactive power compensation , 2011 .

[172]  Graham Kendall,et al.  Evolving reusable 3d packing heuristics with genetic programming , 2009, GECCO.

[173]  Chi Fai Cheung,et al.  A Hyper-Heuristic Inspired by Pearl Hunting , 2012, LION.

[174]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[175]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Multi Expression Programming , 2003, ECAL.

[176]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[177]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[178]  Luca Di Gaspero,et al.  EasySyn++: A Tool for Automatic Synthesis of Stochastic Local Search Algorithms , 2007, SLS.

[179]  Edmund K. Burke,et al.  Integrating neural networks and logistic regression to underpin hyper-heuristic search , 2011, Knowl. Based Syst..

[180]  Sanja Petrovic,et al.  Asynchronous Cooperative Hyper-Heuristic Search , 2009, IC-AI.

[181]  James E. Smith,et al.  Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation , 2008, Adaptive and Multilevel Metaheuristics.

[182]  Benjamin W. Wah,et al.  Genetics-Based Learning of New Heuristics: Rational Scheduling of Experiments and Generalization , 1995, IEEE Trans. Knowl. Data Eng..

[183]  Graham Kendall,et al.  An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic , 2005 .

[184]  Peter Ross,et al.  Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems , 2008, GECCO '08.

[185]  Marko Privosnik The scalability of evolved on line bin packing heuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[186]  Rolf Drechsler,et al.  Learning Heuristics for OBDD Minimization by Evolutionary Algorithms , 1996, PPSN.

[187]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[188]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[189]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[190]  Dumitru Dumitrescu,et al.  Evolving TSP Heuristics Using Multi Expression Programming , 2004, International Conference on Computational Science.

[191]  Ali M. S. Zalzala,et al.  Investigating the use of genetic programming for a classic one-machine scheduling problem , 2001 .

[192]  Fred Glover,et al.  PROBABILISTIC AND PARAMETRIC LEARNING COMBINATIONS OF LOCAL JOB SHOP SCHEDULING RULES , 1963 .

[193]  Riccardo Poli,et al.  Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework , 2009, Memetic Comput..

[194]  Andrew Runka,et al.  Evolving an edge selection formula for ant colony optimization , 2009, GECCO.

[195]  Patrick De Causmaecker,et al.  Hyper-heuristics with a dynamic heuristic set for the home care scheduling problem , 2010, IEEE Congress on Evolutionary Computation.

[196]  Graham Kendall,et al.  A Model for Fresh Produce Shelf-Space Allocation and Inventory Management with Freshness-Condition-Dependent Demand , 2008, INFORMS J. Comput..

[198]  Gisele L. Pappa,et al.  Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach , 2009 .

[199]  María Cristina Riff,et al.  An Evolutionary Hyperheuristic to Solve Strip-Packing Problems , 2007, IDEAL.

[200]  Edmund K. Burke,et al.  Evolutionary Squeaky Wheel Optimization: A New Framework for Analysis , 2011, Evolutionary Computation.

[201]  Graham Kendall,et al.  A graph coloring constructive hyper-heuristic for examination timetabling problems , 2012, Applied Intelligence.

[202]  Moshe Sipper,et al.  Evolutionary Design of FreeCell Solvers , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[203]  Graham Kendall,et al.  Hyperion - A Recursive Hyper-Heuristic Framework , 2011, LION.

[204]  Robert H. Storer,et al.  Problem and Heuristic Space Search Strategies for Job Shop Scheduling , 1995, INFORMS J. Comput..

[205]  Natalio Krasnogor,et al.  A Study on the use of ``self-generation'' in memetic algorithms , 2004, Natural Computing.

[206]  Hugo Terashima-Marín,et al.  Problem-state representations in a hyper-heuristic approach for the 2D irregular BPP , 2010, GECCO '10.

[207]  Chun-Wei Tsai,et al.  A hyper-heuristic clustering algorithm , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[208]  Riccardo Poli,et al.  A histogram-matching approach to the evolution of bin-packing strategies , 2007, 2007 IEEE Congress on Evolutionary Computation.

[209]  Edmund K. Burke,et al.  Effective learning hyper-heuristics for the course timetabling problem , 2014, Eur. J. Oper. Res..

[210]  Graham Kendall,et al.  Providing a memory mechanism to enhance the evolutionary design of heuristics , 2010, IEEE Congress on Evolutionary Computation.

[211]  Hugo Terashima-Marín,et al.  Comparing two models to generate hyper-heuristics for the 2d-regular bin-packing problem , 2007, GECCO '07.

[212]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[213]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[214]  Jin-Kao Hao,et al.  Evolutionary computation in combinatorial optimization : 12th European Conference, EvoCOP 2012, Málaga, Spain, April 11-13 2012 : proceedings , 2012 .

[215]  Sanja Petrovic,et al.  HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search , 2011, EvoCOP.

[216]  David E. Goldberg,et al.  Decision making in a hybrid genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[217]  K BurkeEdmund,et al.  Evolutionary squeaky wheel optimization , 2011 .

[218]  Hugo Terashima-Marín,et al.  A GA-based method to produce generalized hyper-heuristics for the 2D-regular cutting stock problem , 2006, GECCO.

[219]  Peter I. Cowling,et al.  An empirical study of hyperheuristics for managing very large sets of low level heuristics , 2012, J. Oper. Res. Soc..

[220]  Alexander Nareyek,et al.  An Empirical Analysis of Weight-Adaptation Strategies for Neighborhoods of Heuristics , 2001 .

[221]  Ender Özcan,et al.  Mapping the performance of heuristics for Constraint Satisfaction , 2010, IEEE Congress on Evolutionary Computation.

[222]  Riccardo Poli,et al.  Cost-Benefit Investigation of a Genetic-Programming Hyperheuristic , 2007, Artificial Evolution.

[223]  Michael Kampouridis,et al.  On the investigation of hyper-heuristics on a financial forecasting problem , 2012, Annals of Mathematics and Artificial Intelligence.

[224]  Rolf Drechsler,et al.  Heuristic Learning Based on Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[225]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[226]  Graham Kendall,et al.  Monte Carlo hyper-heuristics for examination timetabling , 2012, Ann. Oper. Res..

[227]  Carlos Castro,et al.  Stable solving of CVRPs using hyperheuristics , 2009, GECCO '09.

[228]  Jürgen Schmidhuber,et al.  Learning dynamic algorithm portfolios , 2006, Annals of Mathematics and Artificial Intelligence.

[229]  Michèle Sebag,et al.  Extreme Value Based Adaptive Operator Selection , 2008, PPSN.

[230]  Sanja Petrovic,et al.  A cooperative hyper-heuristic search framework , 2010, J. Heuristics.

[231]  Ender Özcan,et al.  Policy matrix evolution for generation of heuristics , 2011, GECCO '11.

[232]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[233]  Teodor Gabriel Crainic,et al.  Parallel Strategies for Meta-Heuristics , 2003, Handbook of Metaheuristics.

[234]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[235]  Julie Stanik-Hutt,et al.  Be a Squeaky Wheel , 2008 .

[236]  Andries Petrus Engelbrecht,et al.  Investigating the use of local search for improving meta-hyper-heuristic performance , 2012, 2012 IEEE Congress on Evolutionary Computation.

[237]  Sanja Petrovic,et al.  Dispatching rules for production scheduling: A hyper-heuristic landscape analysis , 2009, 2009 IEEE Congress on Evolutionary Computation.

[238]  Daniel Kudenko,et al.  Analyzing heuristic performance with response surface models: prediction, optimization and robustness , 2007, GECCO '07.

[239]  Márk Jelasity,et al.  Distributed hyper-heuristics for real parameter optimization , 2009, GECCO.

[240]  Graham Kendall,et al.  Evolving Bin Packing Heuristics with Genetic Programming , 2006, PPSN.

[241]  Greet Van den Berghe,et al.  A two phase hyper-heuristic approach for solving the Eternity II puzzle , 2010 .

[242]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[243]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[244]  R. Geoff Dromey,et al.  An algorithm for the selection problem , 1986, Softw. Pract. Exp..

[245]  Nelishia Pillay,et al.  Evolving hyper-heuristics for the uncapacitated examination timetabling problem , 2012, J. Oper. Res. Soc..

[246]  Sanja Petrovic,et al.  An investigation of hyper-heuristic search spaces , 2007, 2007 IEEE Congress on Evolutionary Computation.

[247]  He Jiang,et al.  Ant Based Hyper Heuristics with Space Reduction: A Case Study of the p-Median Problem , 2010, PPSN.

[248]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[249]  Natalio Krasnogor,et al.  Self Generating Metaheuristics in Bioinformatics: The Proteins Structure Comparison Case , 2004, Genetic Programming and Evolvable Machines.

[250]  Graham Kendall,et al.  Guided Operators for a Hyper-Heuristic Genetic Algorithm , 2003, Australian Conference on Artificial Intelligence.

[251]  Jaime Cano-Belm A Scatter Search Based Hyper-Heuristic for Sequencing a Mixed-Model Assembly Line , 2009 .

[252]  N. Given Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics , 2003 .

[253]  Peter Ross,et al.  A Promising Genetic Algorithm Approach to Job-Shop SchedulingRe-Schedulingand Open-Shop Scheduling Problems , 1993, ICGA.

[254]  Edmund K. Burke,et al.  A Reinforcement Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling , 2010, Int. J. Appl. Metaheuristic Comput..

[255]  E. Soubeiga,et al.  Multi-Objective Hyper-Heuristic Approaches for Space Allocation and Timetabling , 2005 .

[256]  Michel Gendreau,et al.  Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework , 2012, LION.

[257]  David Maxwell Chickering,et al.  A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[258]  Javier G. Marín-Blázquez,et al.  A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients , 2005, IWLCS.

[259]  Wolfgang Banzhaf,et al.  A Genetic Programming Approach to the Generation of Hyper-Heuristics for the Uncapacitated Examination Timetabling Problem , 2007, EPIA Workshops.

[260]  Riccardo Poli,et al.  Inc*: An Incremental Approach for Improving Local Search Heuristics , 2008, EvoCOP.

[261]  Carlos Cotta,et al.  Adaptive and Multilevel Metaheuristics (Studies in Computational Intelligence) , 2008 .

[262]  A. Sima Etaner-Uyar,et al.  An Investigation of Selection Hyper-heuristics in Dynamic Environments , 2011, EvoApplications.

[263]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[264]  Sanja Petrovic,et al.  Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms , 2010, IEEE Congress on Evolutionary Computation.

[265]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[266]  Graham Kendall,et al.  Hyperheuristics: A Tool for Rapid Prototyping in Scheduling and Optimisation , 2002, EvoWorkshops.

[267]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[268]  Ender Özcan,et al.  LANDSCAPE ANALYSIS OF SIMPLE PERTURBATIVE HYPER-HEURISTICS , 2009 .

[269]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[270]  Graham Kendall,et al.  An adaptive Length chromosome Hyper-Heuristic Genetic Algorithm for a Trainer Scheduling Problem , 2002, SEAL.

[271]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[272]  B. Freisleben,et al.  Optimization of Genetic Algorithms by Genetic Algorithms , 1993 .

[273]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[274]  Graham Kendall,et al.  A simulated annealing hyper-heuristic methodology for flexible decision support , 2012, 4OR.

[275]  H. Asmuni Fuzzy multiple heuristic orderings for course timetabling , 2005 .

[276]  Reha Uzsoy,et al.  Rapid Modeling and Discovery of Priority Dispatching Rules: An Autonomous Learning Approach , 2006, J. Sched..

[277]  Benjamin W. Wah,et al.  Teacher: A Genetics Based System for Learning and Generalizing Heuristics , 2000, Soft Computing in Case Based Reasoning.

[278]  Domagoj Jakobovic,et al.  Genetic Programming Heuristics for Multiple Machine Scheduling , 2007, EuroGP.

[279]  Toshihide Ibaraki,et al.  Metaheuristics : progress as real problem solvers , 2005 .

[280]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[281]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[282]  Peter Ross,et al.  A Heuristic Combination Method for Solving Job-Shop Scheduling Problems , 1998, PPSN.

[283]  A. Sima Etaner-Uyar,et al.  Experimental Comparison of Selection Hyper-heuristics for the Short-Term Electrical Power Generation Scheduling Problem , 2011, EvoApplications.

[284]  Ersan Ersoy,et al.  Memetic Algorithms and Hyperhill-climbers , 2008 .

[285]  Gerald DeJong,et al.  Learning Search Control Knowledge for Deep Space Network Scheduling , 1993, ICML.

[286]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[287]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[288]  Michel Gendreau,et al.  Adaptive iterated local search for cross-domain optimisation , 2011, GECCO '11.

[289]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[290]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[291]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[292]  Ender Özcan,et al.  A Hyper-Heuristic Based on Random Gradient, Greedy and Dominance , 2011, ISCIS.

[293]  Jürgen Schmidhuber,et al.  Dynamic Algorithm Portfolios , 2006, AI&M.

[294]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.