Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems
暂无分享,去创建一个
[1] Georg A. Gottwald,et al. Stochastic Climate Theory , 2016, 1612.07474.
[2] Richard A. Davis,et al. Continuous-time Gaussian autoregression , 2007 .
[3] Michael Ghil,et al. Data-driven non-Markovian closure models , 2014, 1411.4700.
[4] Michael Sørensen,et al. Estimating functions for diffusion-type processes , 2012 .
[5] Peter J. Brockwell,et al. Recent results in the theory and applications of CARMA processes , 2014 .
[6] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[7] Michael Sørensen,et al. Estimating functions for diffusion-type processes , 2012 .
[8] Alexandre J. Chorin,et al. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics , 2015, Proceedings of the National Academy of Sciences.
[9] H. Herzel,et al. Positive Lyapunov exponents in the Kramers oscillator , 1993 .
[10] D. Talay. Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .
[11] H. Sørensen. Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .
[12] Jonathan D. Cryer,et al. Time Series Analysis , 1986 .
[13] Richard H. Jones. FITTING A CONTINUOUS TIME AUTOREGRESSION TO DISCRETE DATA , 1981 .
[14] Andrew J. Majda,et al. Physics constrained nonlinear regression models for time series , 2012 .
[15] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[16] Alexandre J. Chorin,et al. Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation , 2015, 1509.09279.
[17] A. Samson,et al. Contrast estimator for completely or partially observed hypoelliptic diffusion , 2011 .
[18] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .
[19] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[20] Richard A. Davis,et al. Time Series: Theory and Methods (2nd ed.). , 1992 .
[21] A. W. Phillips,et al. THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1959 .
[22] T. Faniran. Numerical Solution of Stochastic Differential Equations , 2015 .
[23] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[24] P. Brockwell. Continuous-time ARMA processes , 2001 .
[25] A. Stuart,et al. Parameter estimation for partially observed hypoelliptic diffusions , 2007, 0710.5442.
[26] Physikalische Gesellschaft. Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations , 2005 .
[27] Arnaud Gloter,et al. Parameter Estimation for a Discretely Observed Integrated Diffusion Process , 2006 .
[28] P. Imkeller,et al. The Kramers Oscillator Revisited , 2000 .
[29] M. V. Tretyakov,et al. Computing ergodic limits for Langevin equations , 2007 .
[30] E. B. Andersen,et al. Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .
[31] Jonathan C. Mattingly,et al. A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.
[32] Andrew M. Stuart,et al. Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..
[33] Prakasa Rao. Statistical inference for diffusion type processes , 1999 .
[34] Yaozhong Hu. Strong and weak order of time discretization schemes of stochastic differential equations , 1996 .