Minimum-Time Optimal Control of Many Robots that Move in the Same Direction at Different Speeds

In this paper, we solve the minimum-time optimal control problem for a group of robots that can move at different speeds but that must all move in the same direction. We are motivated to solve this problem because constraints of this sort are common in micro-scale and nano-scale robotic systems. By application of the minimum principle, we obtain necessary conditions for optimality and use them to guess a candidate control policy. By showing that the corresponding value function is a viscosity solution to the Hamilton-Jacobi-Bellman equation, we verify that our guess is optimal. The complexity of finding this policy for arbitrary initial conditions is only quasilinear in the number of robots, and in fact is dominated by the computation of a planar convex hull. We extend this result to consider obstacle avoidance by explicit parameterization of all possible optimal control policies, and show examples in simulation.

[1]  Dominic R. Frutiger,et al.  Modeling and analysis of wireless resonant magnetic microactuators , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[3]  Dominic R. Frutiger,et al.  Wireless resonant magnetic microactuator for untethered mobile microrobots , 2008 .

[4]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[5]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[6]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[7]  Timothy Bretl,et al.  Control of many robots moving in the same direction with different speeds: A decoupling approach , 2009, 2009 American Control Conference.

[8]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[9]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[10]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[11]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[12]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[13]  H. Harry Asada,et al.  Stochastic Recruitment Control of Large Ensemble Systems With Limited Feedback , 2010 .

[14]  H. Harry Asada,et al.  Broadcast Feedback of Stochastic Cellular Actuators Inspired by Biological Muscle Control , 2007, Int. J. Robotics Res..

[15]  V. Boltyanskii Sufficient Conditions for Optimality and the Justification of the Dynamic Programming Method , 1966 .

[16]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[17]  Bruce Randall Donald,et al.  Simultaneous Control of Multiple MEMS Microrobots , 2008, WAFR.

[18]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[19]  Timothy Bretl Control of Many Agents Using Few Instructions , 2007, Robotics: Science and Systems.

[20]  Dominic R. Frutiger,et al.  MagMites - Microrobots for wireless microhandling in dry and wet environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[22]  Dominic R. Frutiger,et al.  Magmites - wireless resonant magnetic microrobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[23]  Timothy Bretl,et al.  Control of Many Agents by Moving Their Targets: Maintaining Separation , 2007 .

[24]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[25]  D. Wishart Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .

[26]  Timothy Bretl,et al.  Motion planning under bounded uncertainty using ensemble control , 2010, Robotics: Science and Systems.

[27]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[28]  Devin J. Balkcom,et al.  Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles , 2002, Int. J. Robotics Res..

[29]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[30]  Metin Sitti,et al.  Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[32]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[33]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[34]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[35]  Kellen Petersen August Real Analysis , 2009 .

[36]  Dominic R. Frutiger,et al.  Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[37]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.