Group Mapping: A Topological Approach to Map Merging for Multiple Robots

Simultaneous localization and mapping (SLAM) is required for mobile robots to be able to explore a prior unknown space without a global positioning reference. Multiple robots can achieve exploration tasks more quickly but with added complexity. A useful representation of the map for SLAM purposes is as an occupancy grid map. In the most general case of multiple-robot SLAM, occupancy grid maps from multiple agents must be merged in real time without any prior knowledge of their relative transformation. In addition, the probabilistic information of the maps must be accounted for and fused accordingly. In this article, the generalized Voronoi diagram (GVD) is extended to encapsulate the probabilistic information encoded in the occupancy grid map. The new construct called the probabilistic GVD (PGVD) operates directly on occupancy grid maps and is used to determine the relative transformation between maps and fuse them. This approach has three major benefits over past methods: 1) it is effective at finding relative transformations quickly and reliably, 2) the uncertainty associated with transformations used to fuse the maps is accounted for, and 3) the parts of the maps that are more certain are preferentially used in the merging process because of the probabilistic nature of the PGVD.

[1]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[2]  J. L. Gould Honey bee cognition , 1990, Cognition.

[3]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[4]  Howie Choset,et al.  Sensor-Based Exploration: Incremental Construction of the Hierarchical Generalized Voronoi Graph , 2000, Int. J. Robotics Res..

[5]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[6]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[7]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  Sebastian Thrun,et al.  Multi-robot SLAM with Sparse Extended Information Filers , 2003, ISRR.

[9]  David Silver,et al.  Feature extraction for topological mine maps , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[10]  Stephen Roberts,et al.  Positional entropy during pigeon homing II: navigational interpretation of Bayesian latent state models. , 2004, Journal of theoretical biology.

[11]  Wesley H. Huang,et al.  Topological Map Merging , 2005, Int. J. Robotics Res..

[12]  Benjamin Kuipers,et al.  Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[13]  Andreas Birk,et al.  On map merging , 2005, Robotics Auton. Syst..

[14]  Paolo Dario,et al.  Robotics research : The Eleventh International Symposium , 2005 .

[15]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[16]  Andreas Birk,et al.  Merging Occupancy Grid Maps From Multiple Robots , 2006, Proceedings of the IEEE.

[17]  Emanuele Menegatti,et al.  Bayesian inference in the space of topological maps , 2006, IEEE Transactions on Robotics.

[18]  Andrew Howard,et al.  Multi-robot Simultaneous Localization and Mapping using Particle Filters , 2005, Int. J. Robotics Res..

[19]  Stergios I. Roumeliotis,et al.  Multi-robot SLAM with Unknown Initial Correspondence: The Robot Rendezvous Case , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[21]  Dieter Fox,et al.  Voronoi Random Fields: Extracting Topological Structure of Indoor Environments via Place Labeling , 2007, IJCAI.

[22]  Stefano Carpin,et al.  Fast and accurate map merging for multi-robot systems , 2008, Auton. Robots.

[23]  Wolfram Burgard,et al.  Improved updating of Euclidean distance maps and Voronoi diagrams , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Jan Oliver Wallgrün,et al.  Voronoi Graph Matching for Robot Localization and Mapping , 2010, Trans. Comput. Sci..

[25]  Arturo Gil,et al.  Multi-robot visual SLAM using a Rao-Blackwellized particle filter , 2010, Robotics Auton. Syst..

[26]  Benjamin Kuipers,et al.  Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy , 2010, Int. J. Robotics Res..

[27]  Liam Paull,et al.  Multiple robot simultaneous localization and mapping , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Liam Paull,et al.  Efficient map merging using a probabilistic generalized Voronoi diagram , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  H. Bunke Graph Matching : Theoretical Foundations , Algorithms , and Applications , 2022 .