Optimal Control of an Underwater Sensor Network for Cooperative Target Tracking

Optimal control (OC) is a general and effective approach for trajectory optimization in dynamical systems. So far, however, it has not been applied to mobile sensor networks due to the lack of suitable objective functions and system models. In this paper, an integral objective function representing the quality of service of a sensor network performing cooperative track detection over time is derived using a geometric transversals approach. A set of differential equations modeling the sensor network's dynamics is obtained by considering three dependent subsystems, i.e., underwater vehicles, onboard sensors, and oceanographic fields. Each sensor-equipped vehicle is modeled as a bounded subset of a Euclidian space, representing the sensor's field of view (FOV), which moves according to underwater vehicle dynamics. By this approach, the problem of generating optimal sensors' trajectories is formulated as an OC problem in computational geometry. The numerical results show that OC significantly improves the network's quality of service compared to area-coverage and path-planning methods. Also, it can be used to incorporate sensing and energy constraints on the sensors' state and control vectors, and to generate fronts of Pareto optimal trajectories.

[1]  Michael Athans,et al.  Optimal Control , 1966 .

[2]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[3]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[4]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[5]  Silvia Ferrari,et al.  A Geometric Transversal Approach to Analyzing Track Coverage in Sensor Networks , 2008, IEEE Transactions on Computers.

[6]  Howie Choset,et al.  Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods , 2003, Int. J. Robotics Res..

[7]  Thor I. Fossen,et al.  Adaptive control of nonlinear systems: A case study of underwater robotic systems , 1991, J. Field Robotics.

[8]  田原 Matlab语言的Neural Network Toolbox及其在同步中的应用 , 2008 .

[9]  J. Betts,et al.  A sparse nonlinear optimization algorithm , 1994 .

[10]  Stefano Coraluppi,et al.  Recursive track fusion for multi-sensor surveillance , 2004, Inf. Fusion.

[11]  Robert Allen,et al.  Guidance and Control of Underwater Vehicles , 2003 .

[12]  D. A. Smallwood,et al.  Model-based dynamic positioning of underwater robotic vehicles: theory and experiment , 2004, IEEE Journal of Oceanic Engineering.

[13]  Pierre FJ Lermusiaux Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay , 2001 .

[14]  Donald F. Towsley,et al.  A study of the coverage of large-scale sensor networks , 2004, 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[15]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[16]  Pramod K. Varshney,et al.  Energy-efficient deployment of Intelligent Mobile sensor networks , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[17]  Sanjeev Khanna,et al.  Target tracking with distributed sensors: the focus of attention problem , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[18]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[19]  Colin Flanagan,et al.  Neural network control of underwater vehicles , 2005, Eng. Appl. Artif. Intell..

[20]  J. A. George,et al.  Packing different-sized circles into a rectangular container , 1995 .

[21]  Robert F. Stengel,et al.  Optimal control of innate immune response , 2002, Optimal Control Applications and Methods.

[22]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[23]  E. Quak,et al.  Multivariate Approximation and Applications: Theory and algorithms for nonuniform spline wavelets , 2001 .

[24]  Geoffrey Todd Huntington,et al.  Advancement and analysis of Gauss pseudospectral transcription for optimal control problems , 2007 .

[25]  T.A. Wettergren,et al.  Efficient Sensor Characteristic Selection for Cost-Effective Distributed Sensor Networks , 2006, IEEE Journal of Oceanic Engineering.

[26]  Allan R. Robinson,et al.  Physical processes, field estimation and an approach to interdisciplinary ocean modeling , 1996 .

[27]  Alhussein A. Abouzeid,et al.  Coverage by directional sensors in randomly deployed wireless sensor networks , 2006, J. Comb. Optim..

[28]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[29]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[30]  Naomi Ehrich Leonard,et al.  Cooperative Control for Ocean Sampling: The Glider Coordinated Control System , 2008, IEEE Transactions on Control Systems Technology.

[31]  Thor I. Fossen,et al.  Adaptive control of nonlinear underwater robotic systems , 1991 .

[32]  Urbashi Mitra,et al.  Sensor Selection and Power Allocation for Distributed Estimation in Sensor Networks: Beyond the Star Topology , 2008, IEEE Transactions on Signal Processing.

[33]  Anil V. Rao,et al.  Optimal configuration of tetrahedral spacecraft formations , 2007 .

[34]  Parameswaran Ramanathan,et al.  Sensor Deployment Strategy for Detection of Targets Traversing a Region , 2003, Mob. Networks Appl..

[35]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[36]  Philip E. Gill,et al.  Practical optimization , 1981 .

[37]  L.M. Kaplan,et al.  Global node selection for localization in a distributed sensor network , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[38]  O. Egeland,et al.  Trajectory planning and collision avoidance for underwater vehicles using optimal control , 1994 .

[39]  Lingfeng Wang,et al.  Tracking with Distributed Sets of Proximity Sensors using Geometric Invariants , 2004 .

[40]  J.-P. Le Cadre,et al.  Searching tracks , 2000 .

[41]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[42]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[43]  Naomi Ehrich Leonard,et al.  Alternatives for enhancement of transport economy in underwater gliders , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[44]  Sampath Kannan,et al.  Sampling based sensor-network deployment , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[45]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[46]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[47]  Antony K. Liu,et al.  Ocean surface drift revealed by synthetic aperture radar images , 2006 .

[48]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[49]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[50]  Thomas A. Wettergren,et al.  Robust Deployment of Dynamic Sensor Networks for Cooperative Track Detection , 2009, IEEE Sensors Journal.

[51]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[52]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[53]  Lawrence Carin,et al.  Application of the theory of optimal experiments to adaptive electromagnetic-induction sensing of buried targets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[55]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[56]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[57]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[58]  S.C. Shadden,et al.  Optimal trajectory generation in ocean flows , 2005, Proceedings of the 2005, American Control Conference, 2005..

[59]  Bruce A. Draper,et al.  A system to place observers on a polyhedral terrain in polynomial time , 2000, Image Vis. Comput..

[60]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[61]  Jean-Claude Latombe,et al.  Robot Motion Planning with Uncertainty in Control and Sensing , 1991, Artif. Intell..

[62]  Y. Li,et al.  Greedy algorithms for packing unequal circles into a rectangular container , 2005, J. Oper. Res. Soc..

[63]  T.A. Wettergren Performance of search via track-before-detect for distributed sensor networks , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[64]  Miodrag Potkonjak,et al.  Worst and best-case coverage in sensor networks , 2005, IEEE Transactions on Mobile Computing.

[65]  Krishnendu Chakrabarty,et al.  A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks , 2005, IEEE Transactions on Computers.

[66]  Anil V. Rao,et al.  Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseudospectral Method , 2008 .

[67]  A. Caiti,et al.  Evolutionary path planning for autonomous underwater vehicles in a variable ocean , 2004, IEEE Journal of Oceanic Engineering.

[68]  M. Stojanovic,et al.  Underwater acoustic networks , 2000, IEEE Journal of Oceanic Engineering.

[69]  P. Revesz Interpolation and Approximation , 2010 .

[70]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[71]  J. Sibert Electronic Tagging and Tracking in Marine Fisheries , 2001, Reviews: Methods and Technologies in Fish Biology and Fisheries.

[72]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[73]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[74]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[75]  P. Tait Vector Analysis , 1893, Nature.

[76]  Camillo J. Taylor,et al.  Dynamic Sensor Planning and Control for Optimally Tracking Targets , 2003, Int. J. Robotics Res..

[77]  Cumulative detection probabilities for a randomly moving source in a sparse field of sensors , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..

[78]  R. Pollack,et al.  Geometric Transversal Theory , 1993 .

[79]  Xiang-Yang Li,et al.  Coverage in wireless ad-hoc sensor networks , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[80]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[81]  B. O. Koopman Search and Screening: General Principles and Historical Applications , 1980 .

[82]  Chenghui Cai,et al.  Bayesian Network Modeling of Acoustic Sensor Measurements , 2007, 2007 IEEE Sensors.

[83]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[84]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[85]  Jerrold E. Marsden,et al.  Open-boundary modal analysis: Interpolation, extrapolation, and filtering , 2004 .

[86]  S. Sitharama Iyengar,et al.  Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks , 2002, IEEE Trans. Computers.

[87]  Feng Zhao,et al.  Scalable Information-Driven Sensor Querying and Routing for Ad Hoc Heterogeneous Sensor Networks , 2002, Int. J. High Perform. Comput. Appl..