The effect of whisker movement on radial distance estimation: a case study in comparative robotics

Whisker movement has been shown to be under active control in certain specialist animals such as rats and mice. Though this whisker movement is well characterized, the role and effect of this movement on subsequent sensing is poorly understood. One method for investigating this phenomena is to generate artificial whisker deflections with robotic hardware under different movement conditions. A limitation of this approach is that assumptions must be made in the design of any artificial whisker actuators, which will impose certain restrictions on the whisker-object interaction. In this paper we present three robotic whisker platforms, each with different mechanical whisker properties and actuation mechanisms. A feature-based classifier is used to simultaneously discriminate radial distance to contact and contact speed for the first time. We show that whisker-object contact speed predictably affects deflection magnitudes, invariant of whisker material or whisker movement trajectory. We propose that rodent whisker control allows the animal to improve sensing accuracy by regulating contact speed induced touch-to-touch variability.

[1]  Nathan F. Lepora,et al.  Brain-inspired Bayesian perception for biomimetic robot touch , 2012, 2012 IEEE International Conference on Robotics and Automation.

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Hiroshi Yokoi,et al.  An artificial whisker sensor for robotics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  M. Hartmann,et al.  Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. , 2012, Journal of neurophysiology.

[5]  Joseph H. Solomon,et al.  Radial distance determination in the rat vibrissal system and the effects of Weber's law , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Ben Mitchinson,et al.  Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact , 2007, Proceedings of the Royal Society B: Biological Sciences.

[7]  R. Andrew Russell,et al.  Recognising and manipulating objects using data from a whisker sensor array , 2005, Robotica.

[8]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[9]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[10]  Mitra J. Hartmann,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Active Sensing Capabilities of the Rat Whisker System , 2022 .

[11]  Kourosh Khoshelham,et al.  Accuracy analysis of kinect depth data , 2012 .

[12]  C. S. S.,et al.  The Comparative Anatomy of the Nervous System of Vertebrates, including Man , 1937, Nature.

[13]  E. Kramer,et al.  The Advantages of a Tapered Whisker , 2010, PloS one.

[14]  Nathan F. Lepora,et al.  CrunchBot: A Mobile Whiskered Robot Platform , 2011, TAROS.

[15]  Nathan F. Lepora,et al.  Whiskered texture classification with uncertain contact pose geometry , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  M. Koss,et al.  Brainstem loci for sympathetic activation of the nictitating membrane and pupil in the cat. , 1972, The American journal of physiology.

[17]  M. Caria,et al.  Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception , 2010, Behavioral and Brain Functions.

[18]  N. Wiener,et al.  The Role of Models in Science , 1945, Philosophy of Science.

[19]  K. Kardong,et al.  Vertebrates: Comparative Anatomy, Function, Evolution , 1994 .

[20]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[21]  Mathew H. Evans,et al.  Tactile Discrimination Using Active Whisker Sensors , 2012, IEEE Sensors Journal.

[22]  H. Zeigler,et al.  Topography of rodent whisking--I. Two-dimensional monitoring of whisker movements , 2002, Somatosensory & motor research.

[23]  E. Ahissar,et al.  Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. , 2006, Journal of neurophysiology.

[24]  Kevin Gurney,et al.  Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination , 2012, Journal of The Royal Society Interface.

[25]  Rolf Pfeifer,et al.  On the influence of morphology of tactile sensors for behavior and control , 2006, Robotics Auton. Syst..

[26]  A. Ahl The role of vibrissae in behavior: A status review , 1986, Veterinary Research Communications.

[27]  T Bando,et al.  Cerebral cortical and brainstem areas related to the central control of lens accommodation in cat and monkey. , 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[28]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[29]  Jean-Arcady Meyer,et al.  The Psikharpax project: towards building an artificial rat , 2005, Robotics Auton. Syst..

[30]  T. Prescott,et al.  Biomimetic vibrissal sensing for robots , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Mathew H. Evans,et al.  Tactile SLAM with a biomimetic whiskered robot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[32]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[33]  M. Brecht,et al.  Tactile guidance of prey capture in Etruscan shrews , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  DaeEun Kim,et al.  Biomimetic whiskers for shape recognition , 2007, Robotics Auton. Syst..

[35]  Anthony G. Pipe,et al.  Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System , 2007, Adapt. Behav..

[36]  James F. Wilson,et al.  A Whisker Probe System for Shape Perception of Solids , 1995 .

[37]  Anthony G. Pipe,et al.  From Rat Vibrissae to Biomimetic Technology for Active Touch , 2009 .

[38]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  John Kenneth Salisbury,et al.  Interpretation of contact geometries from force measurements , 1984, ICRA.

[40]  R.A. Russell,et al.  Using tactile whiskers to measure surface contours , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[41]  Takashi R Sato,et al.  Divergent movement of adjacent whiskers. , 2002, Journal of neurophysiology.

[42]  Anthony G. Pipe,et al.  Whisking with robots , 2009, IEEE Robotics & Automation Magazine.

[43]  Mathew H. Evans,et al.  Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems , 2010, SAB.

[44]  S. Govindarajulu,et al.  A Comparison of SIFT, PCA-SIFT and SURF , 2012 .

[45]  J. Vincent,et al.  Biomimetics: its practice and theory , 2006, Journal of The Royal Society Interface.

[46]  Joseph H. Solomon,et al.  Biomechanics: Robotic whiskers used to sense features , 2006, Nature.

[47]  Rune W. Berg,et al.  Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. , 2003, Journal of neurophysiology.

[48]  M. Hartmann,et al.  Right–Left Asymmetries in the Whisking Behavior of Rats Anticipate Head Movements , 2006, The Journal of Neuroscience.

[49]  S. Panzeri,et al.  Diverse and Temporally Precise Kinetic Feature Selectivity in the VPm Thalamic Nucleus , 2008, Neuron.

[50]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.

[51]  H. Collewijn,et al.  The significance of microsaccades for vision and oculomotor control. , 2008, Journal of vision.

[52]  Kenneth J. Waldron,et al.  Design of a mechanical proximity sensor , 1986, Robotica.

[53]  B. Komisaruk,et al.  Neural substrates of two different rhythmical vibrissal movements in the rat , 1984, Neuroscience.

[54]  Jeffrey L. Krichmar,et al.  Texture discrimination by an autonomous mobile brain-based device with whiskers , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[55]  M. Nicolelis,et al.  Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations , 2001, The Journal of Neuroscience.

[56]  F. Rice,et al.  Mammalian tactile hair: divergence from a limited distribution , 2011, Annals of the New York Academy of Sciences.

[57]  Luo Juan,et al.  A comparison of SIFT, PCA-SIFT and SURF , 2009 .

[58]  V. Hafner,et al.  The Artificial Mouse - A Robot with Whiskers and Vision , 2004 .

[59]  Nathan F. Lepora,et al.  Whisker-object contact speed affects radial distance estimation , 2010, 2010 IEEE International Conference on Robotics and Biomimetics.

[60]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Anthony G. Pipe,et al.  SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot , 2010, SAB.

[62]  Alexander Zelinsky,et al.  Whisker based mobile robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[63]  Dae-Eun Kim,et al.  A biomimetic whisker for texture discrimination and distance estimation , 2004 .

[64]  Hiroshi Yokoi,et al.  An active artificial whisker array for texture discrimination , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[65]  John Hallam,et al.  From Animals to Animats 10 , 2008 .

[66]  Anthony G. Pipe,et al.  Naive Bayes novelty detection for a moving robot with whiskers , 2010, 2010 IEEE International Conference on Robotics and Biomimetics.

[67]  Mark W. Westneat,et al.  Vertebrates: Comparative Anatomy, Function, Evolution.— Kenneth V. Kardong. 1998. Second Edition. McGraw-Hill, Boston, Massachusetts , 1998 .

[68]  R. A. Russell,et al.  Object location and recognition using whisker sensors , 2003 .

[69]  V. F. Kulikov,et al.  Structural differences between the shafts of mammalian vibrissae and hairs and their causes , 2011, Doklady Biological Sciences.

[70]  M. Hartmann,et al.  Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal , 2003, The Journal of Neuroscience.

[71]  Anthony G. Pipe,et al.  Contact type dependency of texture classification in a whiskered mobile robot , 2009, Auton. Robots.

[72]  T. Prescott,et al.  Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. , 2009, Journal of neurophysiology.

[73]  Nathan F. Lepora,et al.  Naive Bayes texture classification applied to whisker data from a moving robot , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[74]  Tony J. Prescott,et al.  Neuromorphic and Brain-Based Robots: Biomimetic robots as scientific models: a view from the whisker tip , 2011 .

[75]  Joseph H. Solomon,et al.  Extracting Object Contours with the Sweep of a Robotic Whisker Using Torque Information , 2010, Int. J. Robotics Res..

[76]  S de Brouwer,et al.  Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit. , 2001, Journal of neurophysiology.

[77]  Joseph H. Solomon,et al.  Variability in velocity profiles during free-air whisking behavior of unrestrained rats. , 2008, Journal of neurophysiology.

[78]  Miriam Fend,et al.  Whisker-Based Texture Discrimination on a Mobile Robot , 2005, ECAL.