Cancer stem cells and angiogenesis.

[1]  J. Folkman,et al.  Toward an Understanding of Angiogenesis: Search and Discovery , 2015, Perspectives in biology and medicine.

[2]  T. Suda,et al.  Cancer stem cells and their niche , 2009, Cancer science.

[3]  Zoran Ivanovic,et al.  Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo. , 2009, Experimental hematology.

[4]  S. Nelson,et al.  Bevacizumab and chemotherapy for recurrent glioblastoma , 2009, Neurology.

[5]  Tatsuya Ozawa,et al.  PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. , 2009, Cell stem cell.

[6]  John A Butman,et al.  Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  N. Hay,et al.  Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. , 2009, Seminars in cancer biology.

[8]  T. Mikkelsen,et al.  Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan , 2009, Journal of Neuro-Oncology.

[9]  N. Hay,et al.  Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. , 2008, Cancer cell.

[10]  S. Morrison,et al.  Efficient tumor formation by single human melanoma cells , 2008, Nature.

[11]  R. Bjerkvig,et al.  Two distinct tumor phenotypes isolated from glioblastomas show different MRS characteristics , 2008, NMR in biomedicine.

[12]  D. Stolz,et al.  A stochastic model for cancer stem cell origin in metastatic colon cancer. , 2008, Cancer research.

[13]  G. Koren,et al.  Hypoxia Enhances Tumor Stemness by Increasing the Invasive and Tumorigenic Side Population Fraction , 2008, Stem cells.

[14]  C. Glackin,et al.  Neural Stem Cell Targeting of Glioma Is Dependent on Phosphoinositide 3‐Kinase Signaling , 2008, Stem cells.

[15]  Jian Wang,et al.  CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells , 2008, International journal of cancer.

[16]  T. Suda,et al.  Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. , 2008, Biochemical and biophysical research communications.

[17]  Arjan W. Griffioen,et al.  Tumour vascularization: sprouting angiogenesis and beyond , 2007, Cancer and Metastasis Reviews.

[18]  Aleksandar Dakic,et al.  Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells , 2007, Science.

[19]  M Beth McCarville,et al.  Bevacizumab-Induced Transient Remodeling of the Vasculature in Neuroblastoma Xenografts Results in Improved Delivery and Efficacy of Systemically Administered Chemotherapy , 2007, Clinical Cancer Research.

[20]  H. Nakauchi,et al.  Foxo3a is essential for maintenance of the hematopoietic stem cell pool. , 2007, Cell stem cell.

[21]  R. Bjerkvig,et al.  Cancer initiation and progression: involvement of stem cells and the microenvironment. , 2007, Biochimica et biophysica acta.

[22]  Alexander Brawanski,et al.  CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. , 2007, Cancer research.

[23]  K. Bertrand,et al.  Induction of DNA Hypomethylation by Tumor Hypoxia , 2007, Epigenetics.

[24]  K. Parmar,et al.  Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia , 2007, Proceedings of the National Academy of Sciences.

[25]  I. Jonassen,et al.  Angiogenesis-independent tumor growth mediated by stem-like cancer cells , 2006, Proceedings of the National Academy of Sciences.

[26]  Keisuke Ito,et al.  Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells , 2006, Nature Medicine.

[27]  R. Hill Identifying cancer stem cells in solid tumors: case not proven. , 2006, Cancer research.

[28]  N. Maitland,et al.  Prospective identification of tumorigenic prostate cancer stem cells. , 2005, Cancer research.

[29]  Edward W Scott,et al.  Stem-like cells in bone sarcomas: implications for tumorigenesis. , 2005, Neoplasia.

[30]  Rolf Bjerkvig,et al.  The origin of the cancer stem cell: current controversies and new insights , 2005, Nature Reviews Cancer.

[31]  D. Elder,et al.  A tumorigenic subpopulation with stem cell properties in melanomas. , 2005, Cancer research.

[32]  T. Jacks,et al.  Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer , 2005, Cell.

[33]  Q. Han,et al.  Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics. , 2005, Blood.

[34]  C. Jordan Cancer stem cell biology: from leukemia to solid tumors. , 2004, Current opinion in cell biology.

[35]  I. Weissman,et al.  Chronic versus acute myelogenous leukemia: a question of self-renewal. , 2004, Cancer cell.

[36]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[37]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[38]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[39]  Pieter Wesseling,et al.  Antiangiogenic Therapy of Cerebral Melanoma Metastases Results in Sustained Tumor Progression via Vessel Co-Option , 2004, Clinical Cancer Research.

[40]  G. Jayson,et al.  Hypoxia Increases Heparanase-Dependent Tumor Cell Invasion, Which Can Be Inhibited by Antiheparanase Antibodies , 2004, Cancer Research.

[41]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[42]  M. Nowak,et al.  Problems of somatic mutation and cancer. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[43]  I. Weissman,et al.  Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. , 2003, Genes & development.

[44]  Michael F. Clarke,et al.  Applying the principles of stem-cell biology to cancer , 2003, Nature Reviews Cancer.

[45]  Irving L. Weissman,et al.  Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  William R Sellers,et al.  TSC2 regulates VEGF through mTOR-dependent and -independent pathways. , 2003, Cancer cell.

[47]  A. Balmain,et al.  Stem-cell hierarchy in skin cancer , 2003, Nature Reviews Cancer.

[48]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Graham,et al.  Oxygen-mediated Regulation of Tumor Cell Invasiveness , 2002, The Journal of Biological Chemistry.

[50]  B. Curry,et al.  ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. , 2002, Cancer research.

[51]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[52]  Fred H. Gage,et al.  Cell culture: Progenitor cells from human brain after death , 2001, Nature.

[53]  K. Kinzler,et al.  Genetic instability and darwinian selection in tumours. , 1999, Trends in cell biology.

[54]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[55]  P. Lansdorp,et al.  Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. , 1997, Blood.

[56]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[57]  M. Olivotto,et al.  The role of hypoxia in the maintenance of hematopoietic stem cells. , 1993, Blood.

[58]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[59]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.

[60]  P. Armitage,et al.  The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis , 1954, British Journal of Cancer.

[61]  J. Cohnheim Ueber Entzündung und Eiterung , 1867, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[62]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[63]  C. Graham,et al.  Nitric oxide‐mediated regulation of hypoxia‐induced B16F10 melanoma metastasis , 2004, International journal of cancer.

[64]  A. Balmain,et al.  How many mutations are required for tumorigenesis? implications from human cancer data , 1993 .