A Stable and Invariant Three-polar Surface Representation: Application to 3D Face Description

In this paper, we intend to introduce a new curved surface representation that we qualify by three-polar. It is constructed by the superposition of the three geodesic potentials generated from three reference points of the surface. By considering a pre-selected levels set of this superposition, invariant points are obtained. A comparative study between this representation and the unipolar one based on the level curves around one reference point is established in the sense of the stability under errors on the reference points positions. The three-polar representation is applied, finally, for 3D human faces description. Its accuracy is performed in the mean of the Hausdorff shape distance.

[1]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[2]  Atilla Baskurt,et al.  Generalizations of angular radial transform for 2D and 3D shape retrieval , 2005, Pattern Recognit. Lett..

[3]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Anuj Srivastava,et al.  Three-Dimensional Face Recognition Using Shapes of Facial Curves , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Yi Liu,et al.  The Generalized Shape Distributions for Shape Matching and Analysis , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[6]  Faouzi Ghorbel,et al.  Un ensemble d'invariants bipolaires pour les surfaces de R3. Application à la description du visage par une approche 3D , 2012, Traitement du Signal.

[7]  Liming Chen,et al.  A coarse-to-fine curvature analysis-based rotation invariant 3D face landmarking , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[8]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[9]  Faouzi Ghorbel,et al.  A robust invariant bipolar representation for R3 surfaces: applied to the face description , 2013, Ann. des Télécommunications.

[10]  Paola Campadelli,et al.  Automatic Facial Feature Extraction for Face Recognition , 2007 .

[11]  Petros Daras,et al.  Shape matching using the 3D Radon transform , 2004 .

[12]  Anuj Srivastava,et al.  Elastic Shape Models for Face Analysis Using Curvilinear Coordinates , 2009, Journal of Mathematical Imaging and Vision.

[13]  Katsushi Ikeuchi,et al.  The Complex EGI: A New Representation for 3-D Pose Determination , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jean-Louis de Bougrenet de la Tocnaye,et al.  A three-dimensional primitive extraction of long bones obtained from bi-dimensional Fourier descriptors , 1992, Pattern Recognit. Lett..

[15]  F. Ghorbel,et al.  A new 3D surface registration approach depending on a suited resolution: Application to 3D faces , 2012, 2012 16th IEEE Mediterranean Electrotechnical Conference.

[16]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[17]  M. Hebert,et al.  The Representation, Recognition, and Positioning of 3-D Shapes from Range Data , 1987 .

[18]  Dejan V. Vranic,et al.  3D model retrieval , 2004 .

[19]  Faouzi Ghorbel,et al.  Three dimensional modeling of the left ventricle of the heart using spherical harmonic analysis , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[20]  Tony Tung,et al.  The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3d Shapes , 2005, Int. J. Shape Model..

[21]  Céline Loscos,et al.  3D Model Retrieval , 2013 .

[22]  Faouzi Ghorbel Towards a unitary formulation for invariant image description: application to image coding , 1998, Ann. des Télécommunications.

[23]  Dietmar Saupe,et al.  3D Model Retrieval , 2001 .

[24]  Arman Savran,et al.  Bosphorus Database for 3D Face Analysis , 2008, BIOID.