A region-based SLAM algorithm capturing metric, topological, and semantic properties

This paper proposes a SLAM algorithm based on FastSLAM 2.0 that maps features representing regions with a semantic type, topological properties, and an approximative geometric extent. The resulting maps enable spatial reasoning on a semantic level and provide abstract information allowing efficient semantic planning and a convenient interface for human-machine interaction. We present novel region features and an algorithm for estimating the feature parameters from uncertain measurements. In particular, we provide a means of estimating parameters even if the region feature is considerably larger than the robot's sensor range. Finally, we adapt the FastSLAM 2.0 algorithm to map the proposed features and show simulation-based results illustrating the capabilities of the proposed algorithm.

[1]  Rüdiger Dillmann,et al.  Entwurf einer semantischen Missionssteuerung für autonome Serviceroboter , 2007, AMS.

[2]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: a natural integration of topological and metric , 2003, Robotics Auton. Syst..

[3]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[4]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[5]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Frank Dellaert,et al.  Semantic SLAM for Collaborative Cognitive Workspaces , 2004, AAAI Technical Report.

[8]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[9]  Benjamin Kuipers,et al.  The Cognitive Map: Could It Have Been Any Other Way? , 1983 .

[10]  R. Siegwart,et al.  Towards a Cognitive Probabilistic Representation of Space for Mobile Robots , 2006, 2006 IEEE International Conference on Information Acquisition.

[11]  Benjamin Kuipers,et al.  An Intellectual History of the Spatial Semantic Hierarchy , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[12]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[13]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[14]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[15]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  Wolfram Burgard,et al.  Semantic labeling of places , 2005 .

[17]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[18]  Sebastian Thrun,et al.  Simultaneous localization and mapping with unknown data association using FastSLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[19]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..