Polynomial‐time algorithms for solving a class of critical node problems on trees and series‐parallel graphs

We examine variants of the critical node problem on specially structured graphs, which aim to identify a subset of nodes whose removal will maximally disconnect the graph. These problems lie at the intersection of network interdiction and graph theory research and are relevant to several practical optimization problems. The two different connectivity metrics that we consider regard the number of maximal connected components (which we attempt to maximize) and the largest component size (which we attempt to minimize). We develop optimal polynomial-time dynamic programming algorithms for solving these problems on tree structures and on series-parallel graphs, corresponding to each graph-connectivity metric. We also extend our discussion by considering node deletion costs, node weights, and solving the problems on generalizations of tree structures. Finally, we demonstrate the computational efficacy of our approach on randomly generated graph instances. © 2011 Wiley Periodicals, Inc. NETWORKS, 2012 © 2012 Wiley Periodicals, Inc.

[1]  Alan T. Murray,et al.  Exploring the vulnerability of network infrastructure to disruption , 2008 .

[2]  Dorit S. Hochbaum,et al.  Polynomial algorithm for the k-cut problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[3]  J. C. Smith,et al.  Algorithms for discrete and continuous multicommodity flow network interdiction problems , 2007 .

[4]  Massimo Marchiori,et al.  Model for cascading failures in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Farhad Shahrokhi,et al.  Sparsest cuts and bottlenecks in graphs , 1990, Discret. Appl. Math..

[6]  Richard D. Wollmer,et al.  Removing Arcs from a Network , 1964 .

[7]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[8]  Alan T. Murray,et al.  A Methodological Overview of Network Vulnerability Analysis , 2008 .

[9]  Ibrahim. Akgun The K-Group Maximum-Flow Network-Interdiction Problem , 2000 .

[10]  Taieb Znati,et al.  On Approximation of New Optimization Methods for Assessing Network Vulnerability , 2010, 2010 Proceedings IEEE INFOCOM.

[11]  D. Shier Network Reliability and Algebraic Structures , 1991 .

[12]  M. Hajiaghayi,et al.  An O ( √ n )-Approximation Algorithm For Directed Sparsest Cut , 2005 .

[13]  Stephen P. Borgatti,et al.  Identifying sets of key players in a social network , 2006, Comput. Math. Organ. Theory.

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Chase Rainwater,et al.  Multi-period network interdiction problems with applications to city-level drug enforcement , 2012 .

[18]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[19]  Eli V. Olinick,et al.  The use of sparsest cuts to reveal the hierarchical community structure of social networks , 2008, Soc. Networks.

[20]  Jonathan Cole Smith,et al.  Survivable network design under optimal and heuristic interdiction scenarios , 2007, J. Glob. Optim..

[21]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[22]  David D. Carnal,et al.  An enhanced implementation of models for electric power grid interdiction , 2005 .

[23]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[24]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tom Petersen,et al.  Importance and Exposure in Road Network Vulnerability Analysis , 2006 .

[26]  Jose M. Arroyo,et al.  Bilevel programming applied to power system vulnerability analysis under multiple contingencies , 2010 .

[27]  Jonathan Cole Smith,et al.  Exact interdiction models and algorithms for disconnecting networks via node deletions , 2012, Discret. Optim..

[28]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[29]  Alan T. Murray,et al.  Vital Nodes, Interconnected Infrastructures, and the Geographies of Network Survivability , 2006 .

[30]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[31]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[32]  David L. Hicks,et al.  Detecting Hidden Hierarchy in Terrorist Networks: Some Case Studies , 2008, ISI Workshops.

[33]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[34]  Martin Grötschel,et al.  Capacity and Survivability Models for Telecommunication Networks , 1997 .

[35]  Pablo Alvarez,et al.  Tri-level optimization models to defend critical infrastructure , 2007 .

[36]  Chee Chien Ang,et al.  Optimized recovery of damaged electrical power grids , 2006 .

[37]  Vladimir Batagelj,et al.  Centrality in Social Networks , 1993 .

[38]  Alan T. Murray,et al.  Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure , 2010, Comput. Oper. Res..

[39]  Pierre Semal,et al.  Measuring the Survivability of a Network: Connectivity and Rest-Connectivity , 2000, Eur. Trans. Telecommun..

[40]  Valdis E. Krebs,et al.  Mapping Networks of Terrorist Cells , 2001 .

[41]  Alan T. Murray,et al.  Critical network infrastructure analysis: interdiction and system flow , 2007, J. Geogr. Syst..

[42]  M. Stoer Design of Survivable Networks , 1993 .

[43]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[44]  Zhou Tao,et al.  Epidemic dynamics on complex networks , 2006 .

[45]  J. Salmeron,et al.  Analysis of electric grid security under terrorist threat , 2004, IEEE Transactions on Power Systems.

[46]  Yuval Rabani,et al.  On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.

[47]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[48]  Yuhai Tu,et al.  How robust is the Internet? , 2000, Nature.

[49]  Marco Di Summa,et al.  Complexity of the critical node problem over trees , 2011, Comput. Oper. Res..

[50]  Elad Hazan,et al.  O(sqrt(log(n)) Approximation to SPARSEST CUT in Õ(n2) Time , 2004, SIAM J. Comput..

[51]  Panos M. Pardalos,et al.  Handbook of Optimization in Telecommunications , 2006 .

[52]  Ali Ridha Mahjoub,et al.  Design of Survivable Networks: A survey , 2005, Networks.

[53]  Alan T. Murray,et al.  Comparative Approaches for Assessing Network Vulnerability , 2008 .

[54]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[55]  Alan T. Murray,et al.  Bounding Network Interdiction Vulnerability Through Cutset Identification , 2007 .

[56]  Nobuji Saito,et al.  Linear-time computability of combinatorial problems on series-parallel graphs , 1982, JACM.

[57]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[58]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Hüseyin Uzunalioglu,et al.  A network survivability model for critical national infrastructures , 2004, Bell Labs Technical Journal.

[60]  Paul S. Bonsma,et al.  Sparsest cuts and concurrent flows in product graphs , 2004, Discret. Appl. Math..

[61]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[62]  Ljupco Kocarev,et al.  Application of modal analysis in assessing attack vulnerability of complex networks , 2010 .