A multi-path data exclusion model for RSSI-based indoor localization

Positioning a device with the only help of an RF transmitter in an indoor environment is difficult because of the complexity and of the unpredictable nature of radio propagation in such a scenario. The effects of fading, multipath, shadowing make it difficult to infer distance between two points from a blind measurement of the signal attenuation. However, the Received Signal Strength Indicator (RSSI) remains a popular ranging technique when it comes to the Internet of Things, as it does not require dedicated or expensive hardware. The variability of the RSSI is often addressed by modeling channel attenuation by a parametric model like the log-normal shadowing. Such model parameters are generally evaluated by maximum likelihood estimation (MLE). In this paper, we confront this technique to an indoor realistic testbed and show that it achieves a low accuracy. We propose to use an alternate model named biased log-normal shadowing model that is able to alleviate the effects of multipath and show that MLE on this biased model achieves a better precision.

[1]  Andreas Savvides,et al.  An Empirical Characterization of Radio Signal Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas , 2006, EWSN.

[2]  Masayuki Murata,et al.  Indoor Localization System using RSSI Measurement of Wireless Sensor Network based on ZigBee Standard , 2006, Wireless and Optical Communications.

[3]  Dapeng Zhao,et al.  A Traffic Reducing Method for Multiple Targets Localisation in an IEEE 802.15.4 Based Sensor Network , 2006, IEEE Vehicular Technology Conference.

[4]  P. Levis,et al.  RSSI is Under Appreciated , 2006 .

[5]  Richard P. Martin,et al.  The limits of localization using signal strength: a comparative study , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[6]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[7]  S. Hara,et al.  Propagation characteristics of IEEE 802.15.4 radio signal and their application for location estimation , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[8]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[9]  Laurent Toutain,et al.  Experiments on the RSSI as a Range Estimator for Indoor Localization , 2012, 2012 5th International Conference on New Technologies, Mobility and Security (NTMS).