The brain structural hub of interhemispheric information integration for visual motion perception.

We investigated the key anatomical structures mediating interhemispheric integration during the perception of apparent motion across the retinal midline. Previous studies of commissurotomized patients suggest that subcortical structures mediate interhemispheric transmission but the specific regions involved remain unclear. Here, we exploit interindividual variations in the propensity of normal subjects to perceive horizontal motion, in relation to vertical motion. We characterize these differences psychophysically using a Dynamic Dot Quartet (an ambiguous stimulus that induces illusory motion). We then tested for correlations between a tendency to perceive horizontal motion and fractional anisotropy (FA) (from structural diffusion tensor imaging), over subjects. FA is an indirect measure of the orientation and integrity of white matter tracts. Subjects who found it easy to perceive horizontal motion showed significantly higher FA values in the pulvinar. Furthermore, fiber tracking from an independently identified (subject-specific) visual motion area converged on the pulvinar nucleus. These results suggest that the pulvinar is an anatomical hub and may play a central role in interhemispheric integration.

[1]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[2]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[3]  D Le Bihan,et al.  Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. , 1993, Neuroreport.

[4]  C. Pierpaoli,et al.  Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. , 1999, Magnetic resonance imaging.

[5]  D. Glaser,et al.  Metastable motion anisotropy , 1991, Visual Neuroscience.

[6]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[7]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[8]  Pierrick Coupé,et al.  3D Wavelet Subbands Mixing for Image Denoising , 2008, Int. J. Biomed. Imaging.

[9]  T. L. Davis,et al.  Morphometry of in vivo human white matter association pathways with diffusion‐weighted magnetic resonance imaging , 1997, Annals of neurology.

[10]  Mark Jenkinson,et al.  Global optimisation for robust affine registration , 2000, NeuroImage.

[11]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[12]  D. Head,et al.  Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. , 2004, Cerebral cortex.

[13]  K. Nave,et al.  Survival of adult neurons lacking cholesterol synthesis in vivo , 2007, BMC Neuroscience.

[14]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[15]  T. Iwasawa,et al.  Diffusion‐weighted imaging of the human optic nerve: A New approach to evaluate optic neuritis in multiple sclerosis , 1997, Magnetic resonance in medicine.

[16]  Philipp Sterzer,et al.  Responses of extrastriate cortex to switching perception of ambiguous visual motion stimuli , 2003, Neuroreport.

[17]  Brian T. Gold,et al.  Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: Evidence from diffusion tensor imaging , 2007, Neuropsychologia.

[18]  G. Barker,et al.  Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis , 1999, Neurology.

[19]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[20]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[21]  R. Poldrack,et al.  Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability Evidence from Diffusion Tensor Magnetic Resonance Imaging , 2000, Neuron.

[22]  J. Pekar,et al.  Echo-planar imaging of intravoxel incoherent motion. , 1990, Radiology.

[23]  R. Walker,et al.  Functional Imaging of the Human Superior Colliculus: An Optimised Approach , 2009, NeuroImage.

[24]  J. Kaas,et al.  Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. , 1990, Science.

[25]  A Pfefferbaum,et al.  Sex differences in the effects of alcohol on brain structure. , 2001, The American journal of psychiatry.

[26]  Heidi Johansen-Berg,et al.  White matter integrity in the vicinity of Broca's area predicts grammar learning success , 2009, NeuroImage.

[27]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[28]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[29]  N. Miller,et al.  Technique to improve chronic motor deficit after stroke. , 1993, Archives of physical medicine and rehabilitation.

[30]  M. Corballis,et al.  Effect of luminance on successiveness discrimination in the absence of the corpus callosum , 2000, Neuropsychologia.

[31]  V. Ramachandran,et al.  Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[33]  V. S. Ramachandran,et al.  Perception of apparent motion by commissurotomy patients , 1986, Nature.

[34]  E. Akbudak,et al.  Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results , 1996, Magnetic resonance in medicine.

[35]  A. Dromerick,et al.  Does the Application of Constraint-Induced Movement Therapy During Acute Rehabilitation Reduce Arm Impairment After Ischemic Stroke? , 2000, Stroke.

[36]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Activation of superior colliculi in humans during visual exploration , 2007, BMC Neuroscience.

[38]  David H. Miller,et al.  Diffusion imaging of the spinal cord in vivo: Estimation of the principal diffusivities and application to multiple sclerosis , 2000, Magnetic resonance in medicine.

[39]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[40]  Christian Büchel,et al.  The predictive value of white matter organization in posterior parietal cortex for spatial visualization ability , 2006, NeuroImage.

[41]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[42]  M. Gazzaniga Perceptual and attentional processes following callosal section in humans , 1987, Neuropsychologia.

[43]  Lars Muckli,et al.  Primary Visual Cortex Activity along the Apparent-Motion Trace Reflects Illusory Perception , 2005, PLoS biology.

[44]  Christian Büchel,et al.  Neural Coupling Binds Visual Tokens to Moving Stimuli , 2005, The Journal of Neuroscience.

[45]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[46]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[47]  Leonard K. Kaczmarek,et al.  Protein Kinase Modulation of a Neuronal Cation Channel Requires Protein–Protein Interactions Mediated by an Src homology 3 Domain , 2002, The Journal of Neuroscience.

[48]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[49]  D. Norris The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment , 2001, NMR in biomedicine.

[50]  Neelam Naikar,et al.  Perception of apparent motion across the retinal midline following commissurotomy , 1996, Neuropsychologia.

[51]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[52]  Sabine Kastner,et al.  Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. , 2005, Journal of neurophysiology.

[53]  Daniel Strüber,et al.  MEG alpha activity decrease reflects destabilization of multistable percepts. , 2002, Brain research. Cognitive brain research.

[54]  Hangyi Jiang,et al.  Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[55]  M. Shimono,et al.  Neural processes for intentional control of perceptual switching: A magnetoencephalography study , 2011, Human brain mapping.

[56]  Lars Muckli,et al.  Deciding what to see: The role of intention and attention in the perception of apparent motion , 2008, Vision Research.

[57]  M. Mallar Chakravarty,et al.  The Connectivity of the Human Pulvinar: A Diffusion Tensor Imaging Tractography Study , 2007, Int. J. Biomed. Imaging.

[58]  Hiroshi Fukuda,et al.  Decrease in glucose metabolism in frontal cortex associated with deterioration of microstructure of corpus callosum measured by diffusion tensor imaging in healthy elderly , 2008, Human brain mapping.

[59]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[60]  D. Salat,et al.  Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[62]  V. S. Ramachandran,et al.  Perceptual organization in moving patterns , 1983, Nature.

[63]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[64]  I. Murakami,et al.  Neural basis of stable perception of an ambiguous apparent motion stimulus , 2009, Neuroscience.