Computational Air Traffic Management

This is a quasi-review paper which defines and then places Computational Air Traffic Management (CATM) in a historical context. CATM is presented as the natural convergence of many, seemingly disparate, air traffic technologies that have evolved over the past two decades. It is the emergent order which is derived from the collective behaviour of a number of interacting systems. A distinction is initially made between strategic air traffic management (ATM) and tactical air traffic control (ATC). This distinction ebbs in CATM and the intimately intertwined relationship between ATM and ATC is accentuated. The features of an ideal ATC system are discussed and developed objectively in contrast to current systems. The requirements are based on a high level top-down approach, but also look at the time-proven characteristics that allow the current ATC system to function so surprisingly well. An inventory of the interesting research questions in the overall CATM picture is therefore gradually drawn-up along the discussion to indicate areas with insufficient research coverage. In the second part of the paper, a clean sheet approach for devising an operational concept for a streamlined CATM system is proposed and discussed. This example describes an airborne, decentralized, fault-tolerant paradigm for a continental (and perhaps global) ATC system that readily scales up (perhaps linearly) to accommodate projected future aircraft densities. The system is broadly consistent with the proposed objectives as put forward in both NextGen (Next Generation Air Transportation System) and SESAR (Single European Sky ATM Research). Practical algorithms for several subsystems are classified, and discussed in the context of emerging computational hardware. The case is then made for a new breed of grid-oriented avionics hardware that will enable aircraft to take CATM to the skies by leveraging on the many benefits brought by pervasive inter-aircraft ad-hoc communication networks and heterogeneous, high performance grid-computing.

[1]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  Michael S. Nolan,et al.  Fundamentals of Air Traffic Control , 1990 .

[4]  Tecnología do ar e espaço European Organisation for the Safety of Air Navigation , 2010 .

[5]  Matt R. Jardin,et al.  Toward real-time en route air traffic control optimization , 2003 .

[6]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[7]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Shankar Sastry,et al.  Differential flatness based full authority helicopter control design , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  R. Bolczak,et al.  Controller-pilot data link communications (CPDLC) Build 1 value-added services , 2004, The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576).

[10]  Hussein A. Abbass,et al.  Local models—an approach to distributed multi-objective optimization , 2009, Comput. Optim. Appl..

[11]  James K. Kuchar,et al.  Survey of conflict detection and resolution modeling methods , 1997 .

[12]  S. Zerkowitz The need for a new ATM operational concept a strategic necessity? , 2001, 20th DASC. 20th Digital Avionics Systems Conference (Cat. No.01CH37219).

[13]  Eric Hoffman,et al.  DELEGATION OF SEPARATION ASSURANCE TO AIRCRAFT: TOWARDS A FRAMEWORK FOR ANALYSING THE DIFFERENT CONCEPTS AND UNDERLYING PRINCIPLES , 2000 .

[14]  H. A. Abbass,et al.  A dynamic continuous descent approach methodology for low noise and emission , 2010, 29th Digital Avionics Systems Conference.

[15]  J. Lygeros,et al.  A Multi-Aircraft Model for Conflict Detection and Resolution Algorithm Evaluation , 2004 .

[16]  Matt R. Jardin Air Traffic Conflict Models , 2004 .

[17]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[18]  Edmund K. Burke,et al.  A multi-objective approach for robust airline scheduling , 2010, Comput. Oper. Res..

[19]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[20]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[21]  Arek Shakarian,et al.  Required Total System Performance and Results of a Short Term Conflict Alert Simulation Study , 2001 .

[22]  Enrique Alba,et al.  Metaheuristics for Dynamic Optimization , 2012, Metaheuristics for Dynamic Optimization.

[23]  Tapabrata Ray,et al.  Infeasibility Driven Evolutionary Algorithm for Constrained Optimization , 2009 .

[24]  W. E. Kelly Conflict detection and alerting for separation assurance systems , 1999, Gateway to the New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No.99CH37033).

[25]  Mirko Krivánek,et al.  Simulated Annealing: A Proof of Convergence , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ian Cowling Towards autonomy of a quadrotor UAV , 2008 .

[27]  H. Erzberger,et al.  Concepts and Algorithms for Terminal-Area Traffic Management , 1984, 1984 American Control Conference.

[28]  O. A. Yakimenko,et al.  Airplane trajectory control at the stage of rendezvous with maneuvering object algorithms synthesis , 1998, Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185).

[29]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[31]  R. Luus Optimal control by dynamic programming using systematic reduction in grid size , 1990 .

[32]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[33]  Sandor M. Veres,et al.  Autonomous vehicle control systems — a review of decision making , 2011 .

[34]  James K. Kuchar,et al.  The Traffic Alert and Collision Avoidance System , 2007 .

[35]  Mitchell A. Potter,et al.  The design and analysis of a computational model of cooperative coevolution , 1997 .

[36]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[37]  R. Luus Iterative dynamic programming : From curiosity to a practical optimization procedure , 1998 .

[38]  J. Stam Real-Time Fluid Dynamics for Games , 2003 .

[39]  Dimos V. Dimarogonas,et al.  Distributed 3D navigation and collision avoidance for nonholonomic aircraft-like vehicles , 2009, 2009 European Control Conference (ECC).

[40]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[41]  Amy Cohn,et al.  Decreasing airline delay propagation by re-allocating scheduled slack , 2010 .

[42]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[43]  P. Husbands,et al.  Mapping Based Constraint Handling for Evolutionary Search; Thurston’s Circle Packing and Grid Generation , 1998 .

[44]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[45]  M. S. Eby,et al.  A self-organizational approach for resolving air traffic conflicts , 1995 .

[46]  Edmund K. Burke,et al.  Forecasting Flight Schedule Robustness , 2005 .

[47]  Frank Morlang Adapting to Project Needs: DLR 's ATS in the EMMA Research Project , 2008 .

[48]  John Lygeros,et al.  Advanced air traffic automation : A case study in distributed decentralized control , 1998 .

[49]  James F. Whidborne,et al.  A prototype of an autonomous controller for a quadrotor UAV , 2007, 2007 European Control Conference (ECC).

[50]  J. S. Morrel The Mathematics of Collision Avoidance in the Air , 1958 .

[51]  C. E. Puente,et al.  The Essence of Chaos , 1995 .

[52]  Jos Starn A Simple Fluid Solver Based on the FFT , 2001, J. Graphics, GPU, & Game Tools.

[53]  Peter J. Denning,et al.  The locality principle , 2005, CACM.

[54]  J. M. Hoekstra,et al.  Free Flight in a Crowded Airspace? , 2000 .

[55]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[56]  Inseok Hwang,et al.  A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary , 2013, Science China Information Sciences.

[57]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[58]  Vincent P. Galotti The Future Air Navigation System (Fans): Communication Navigation Surveillance Air Traffic Management , 1997 .

[59]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[60]  Xue Jun Zhang,et al.  Conflict Resolution Based on Cooperative Coevolutionary with Dynamic Grouping Strategy for Multi-Aircraft , 2013 .

[61]  Mark B. Milam,et al.  Trajectory generation for differentially flat systems via NURBS basis functions with obstacle avoidance , 2006, 2006 American Control Conference.

[62]  Raja Parasuraman,et al.  The Role of the Air Traffic Controller in Future Air Traffic Management: An Empirical Study of Active Control versus Passive Monitoring , 2001, Hum. Factors.

[63]  K. L. Bowers Determining the feasibility of a flight profile in a Free Flight environment , 1996, 15th DASC. AIAA/IEEE Digital Avionics Systems Conference.

[64]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[65]  M. S. Eby,et al.  Free flight separation assurance using distributed algorithms , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[66]  Michael Defoort Distributed receding horizon planning for multi-robot systems , 2010, 2010 IEEE International Conference on Control Applications.

[67]  Andres G. Zellweger,et al.  Free Flight in a Crowded Airspace , 2001 .

[68]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[69]  P Smith,et al.  Could air traffic management learn from other network industries , 2006 .

[70]  Rein Luus,et al.  Handling Inequality Constraints in Optimal Control by Problem Reformulation , 2009 .

[71]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[72]  Heinz Erzberger,et al.  Conflict probability estimation for free flight , 1997 .

[73]  R. Parasuraman Vigilance, monitoring, and search. , 1986 .

[74]  El-Ghazali Talbi,et al.  Hybridizing exact methods and metaheuristics: A taxonomy , 2009, Eur. J. Oper. Res..

[75]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[76]  Eric Hoffman,et al.  Combining Sequencing Tool and Spacing Instructions to Enhance the Management of Arrival Flows of Aircraft , 2005 .

[77]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[78]  Bernd Korn,et al.  Combining 4D and ASAS for Efficient TMA Operations , 2007 .

[79]  Kathrin Klamroth,et al.  Norm-based approximation in multicriteria programming , 2002 .

[80]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[81]  Richard Irvine Comparison of pair-wise priority-based resolution schemes through fast-time simulation , 2009 .

[82]  W Butler Ricky,et al.  On the Formal Verification of Conflict Detection Algorithms , 2001 .

[83]  YaoXin,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008 .

[84]  David S. Lee,et al.  Aviation and global climate change in the 21st century , 2009, Atmospheric Environment.

[85]  César A. Muñoz,et al.  Formal Verification of an Optimal Air Traffic Conflict Resolution and Recovery Algorithm , 2007, WoLLIC.

[86]  Reinhard Lüling,et al.  A general purpose distributed implementation of simulated annealing , 1992, [1992] Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing.

[87]  Vincent Mouillet,et al.  BADA: An advanced aircraft performance model for present and future ATM systems , 2010 .

[88]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[89]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[90]  Jimmy Krozel INTENT INFERENCE FOR FREE FLIGHT AIRCRAFT , 2000 .

[91]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[92]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[93]  S. Zerkowitz Is the need for a new ATM operational concept a strategic necessity , 2001 .

[94]  Rob C J Ruigrok,et al.  Human factors evaluations of Free Flight Issues solved and issues remaining. , 2007, Applied ergonomics.

[95]  James K. Kuchar,et al.  A review of conflict detection and resolution modeling methods , 2000, IEEE Trans. Intell. Transp. Syst..

[96]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[97]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[98]  Rodney Teo,et al.  Decentralized overlapping control of a formation of unmanned aerial vehicles , 2004, Autom..

[99]  Heinz Erzberger,et al.  The automated airspace concept , 2001 .

[100]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[101]  F. Maracich Flying free flight: pilot perspective and system integration requirement , 2005, 24th Digital Avionics Systems Conference.

[102]  Xiaodong Li,et al.  Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[103]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[104]  Victor Carreño,et al.  Formal Verification of Conflict Detection Algorithms , 2001, CHARME.

[105]  Dimitri N. Mavris,et al.  A Visual Analytics Approach to the Qualitative Comparison of the SESAR and NextGen Efforts , 2009 .

[106]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[107]  Tolga Cenesizoglu,et al.  Forecasting (Aggregate) Demand for U.S. Commercial Air Travel , 2010 .

[108]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[109]  M. Wade The co-evolutionary genetics of ecological communities , 2007, Nature Reviews Genetics.

[110]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[111]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[112]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[113]  R.N.H.W. van Gent,et al.  CONCEPTUAL DESIGN OF FREE FLIGHT WITH AIRBORNE SEPARATION ASSURANCE , 1998 .

[114]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[115]  Dominick Andrisani,et al.  Independent ADS-B Verification and Validation , 2005 .

[116]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[117]  Oussama Khatib,et al.  Commande dynamique dans l''espace op'erational des robots ma-nipulaters en pr'esence d''obstacles , 1980 .

[118]  Matt R. Jardin Analytical Relationships Between Conflict Counts and Air-Traffic Density , 2005 .

[119]  Jiannong Cao,et al.  Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems , 2013, IEEE Transactions on Cybernetics.

[120]  Oleg A. Yakimenko,et al.  A Direct Method for UAV Guidance and Control, Poster , 2008 .

[121]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[122]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[123]  J.S. Meserole,et al.  What is System Wide Information Management (SWIM)? , 2006, 2006 ieee/aiaa 25TH Digital Avionics Systems Conference.

[124]  Carlos Cotta,et al.  Embedding Branch and Bound within Evolutionary Algorithms , 2003, Applied Intelligence.

[125]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[126]  Gerard S. Schkolnik,et al.  Autonomous Formation Flight , 2004 .

[127]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[128]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[129]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[130]  Patrick Siarry,et al.  A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions , 2000, J. Heuristics.

[131]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[132]  Steven L. Waslander Multi-agent systems design for aerospace applications , 2007 .

[133]  V P Galotti THE FUTURE AIR NAVIGATION SYSTEM (FANS) , 1997 .

[134]  Yuhui Shi,et al.  Handbook of Swarm Intelligence , 2011 .