Three-dimensional shape representation from curvature dependent surface evolution

This paper presents a novel approach to surface representation based on its differential deformations. The evolution of an arbitrary curve by curvature deforms it to a round point while in the process simplifying it. Similarly, we seek a process that deforms an arbitrary surface into a sphere without developing self-intersections, in the process creating a sequence of increasingly simpler surfaces. No previously studied curvature dependent flow satisfies this requirement: mean curvature flow leads to a splitting of the surface, while Gaussian curvature flow leads to instabilities. Thus, in search for such a process, we impose constraints (motivated by visual representation) to narrow down the space of candidate flows. Our main result is to establish a direction for the movement of points to avoid self-intersections: (1) convex elliptic points should move in, while concave elliptic points move out; and (2) hyperbolic and parabolic points should not move at all. Accordingly, we propose /spl part//spl psi///spl part/t=sign(H)/spl radic/(G.<<ETX>>

[1]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[2]  James A. Sethian,et al.  Flow under mean curvature: Singularity formation and minimal surfaces , 1991 .

[3]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[4]  Matthew A. Grayson,et al.  A short note on the evolution of a surface by its mean curvature , 1989 .

[5]  James A. Sethian,et al.  Numerical Methods for Propagating Fronts , 1987 .

[6]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[8]  Michael Leyton,et al.  A Process-Grammar for Shape , 1988, Artif. Intell..

[9]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[11]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[12]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[13]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[14]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[15]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[16]  Paul J. Besl,et al.  Surfaces in Range Image Understanding , 1988, Springer Series in Perception Engineering.

[17]  Kaising Tso,et al.  Deforming a hypersurface by its Gauss-Kronecker curvature , 1985 .

[18]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[20]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[21]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[22]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[23]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[24]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[25]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[26]  Claus Gerhardt,et al.  Flow of nonconvex hypersurfaces into spheres , 1990 .

[27]  J. Urbas,et al.  An expansion of convex hypersurfaces , 1991 .

[28]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[29]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[31]  William J. Firey,et al.  Shapes of worn stones , 1974 .

[32]  B. Kimia,et al.  Geometric Heat Equation and Non-linear Diiusion of Shapes and Images Contents 1 Introduction 1 2 the Shape from Deformation Framework 2 3 Nonlinear Smoothing by Curvature Deformation 4 3.1 Order Preserving Smoothing Annihilation of Extrema and Innection Points , 2007 .

[33]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[34]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[35]  Benjamin B. Kimia,et al.  Nonlinear shape approximation via the entropy scale space , 1993, Optics & Photonics.

[36]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[37]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[38]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[39]  Demetri Terzopoulos,et al.  A finite element model for 3D shape reconstruction and nonrigid motion tracking , 1993, 1993 (4th) International Conference on Computer Vision.

[40]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Bennett Chow,et al.  Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature , 1985 .

[42]  S. Zucker,et al.  Toward a computational theory of shape: an overview , 1990, eccv 1990.

[43]  Lee R. Nackman,et al.  Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[45]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[46]  Katsushi Ikeuchi,et al.  Shape representation and image segmentation using deformable surfaces , 1992, Image Vis. Comput..

[47]  Thomas O. Binford,et al.  Computer Description of Curved Objects , 1973, IEEE Transactions on Computers.

[48]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[49]  V. Caselles,et al.  What is the best causal scale-space for 3D images , 1994 .