Tunable chirality of noncentrosymmetric magnetic Weyl semimetals in rare-earth carbides

[1]  K. Takahashi,et al.  Reduction of Nd moments and local magnetic anisotropy in Nd2Fe14B single crystals , 2021 .

[2]  J. Sinova,et al.  Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets , 2020, Science Advances.

[3]  Run‐Wei Li,et al.  Materials with strong spin-textured bands , 2020 .

[4]  J. C. Budich,et al.  Nonlocal annihilation of Weyl fermions in correlated systems , 2019, Physical Review Research.

[5]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[6]  J. Zou,et al.  The study of magnetic topological semimetals by first principles calculations , 2019, npj Computational Materials.

[7]  Benedikt Ernst,et al.  Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet , 2019, Science.

[8]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[9]  J. van den Brink,et al.  Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7 : A Bi2Te3 Derivative with a Periodic Mn Sublattice , 2019, Physical Review X.

[10]  T. Klimczuk,et al.  Charge density wave and large nonsaturating magnetoresistance in YNiC2 and LuNiC2 , 2019, Physical Review B.

[11]  Z. Fang,et al.  Topological nodal lines and hybrid Weyl nodes in YCoC2 , 2019, APL Materials.

[12]  Yulin Chen,et al.  Magnetic exchange induced Weyl state in a semimetal EuCd2Sb2 , 2019, 1903.12532.

[13]  E. Kaxiras,et al.  Creating Weyl nodes and controlling their energy by magnetization rotation , 2019, Physical Review Research.

[14]  C. Felser,et al.  Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2 , 2019, Science.

[15]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[16]  J. C. Budich,et al.  Unpaired Weyl Nodes from Long-Ranged Interactions: Fate of Quantum Anomalies. , 2018, Physical review letters.

[17]  Yevhen Kushnirenko,et al.  Time-reversal symmetry breaking type-II Weyl state in YbMnBi2 , 2019, Nature Communications.

[18]  S. Nandy,et al.  Transport phenomena of multi-Weyl semimetals in co-planar setups , 2018, 1812.08322.

[19]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[20]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[21]  Baokai Wang,et al.  Topological Hopf and Chain Link Semimetal States and Their Application to Co_{2}MnGa. , 2017, Physical review letters.

[22]  Takeshi Kondo,et al.  Evidence for magnetic Weyl fermions in a correlated metal. , 2017, Nature materials.

[23]  Lingwei Li,et al.  Large reversible magnetocaloric effect in the RECoC2 (RE=Ho and Er) compounds , 2017 .

[24]  S. Tewari,et al.  Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals. , 2017, Physical review letters.

[25]  H. Nakao,et al.  Interplay between charge density wave and antiferromagnetic order in GdNiC2 , 2017 .

[26]  T. Morimoto,et al.  Quantized circular photogalvanic effect in Weyl semimetals , 2016, Nature Communications.

[27]  Timur K. Kim,et al.  Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe 4 , 2016, 1609.09549.

[28]  B. Bradlyn,et al.  Chiral anomaly factory: Creating Weyl fermions with a magnetic field , 2016, 1604.08601.

[29]  J. Michal,et al.  Field-induced suppression of charge density wave in GdNiC2 , 2016 .

[30]  D. Kharzeev,et al.  Chiral magnetic effect without chirality source in asymmetric Weyl semimetals , 2016, 1610.08986.

[31]  Y. Qi,et al.  Magnetic properties and giant reversible magnetocaloric effect in GdCoC2 , 2016 .

[32]  T. Klimczuk,et al.  Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying , 2016, Scientific Reports.

[33]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[34]  I. Souza,et al.  Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface. , 2015, Physical review letters.

[35]  T. Oguchi,et al.  Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP , 2015, 1510.01503.

[36]  X. Dai,et al.  Observation of Weyl nodes and Fermi arcs in tantalum phosphide , 2015, Nature Communications.

[37]  D. Pesin,et al.  Chiral magnetic effect and natural optical activity in metals with or without Weyl points , 2015 .

[38]  Z. Wang 王,et al.  Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP , 2015 .

[39]  E. Witten Three Lectures On Topological Phases Of Matter , 2015, 1510.07698.

[40]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[41]  Su-Yang Xu,et al.  Experimental discovery of a topological Weyl semimetal state in TaP , 2015, Science Advances.

[42]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[43]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[44]  Graeme W Watson,et al.  Occupation matrix control of d- and f-electron localisations using DFT + U. , 2014, Physical chemistry chemical physics : PCCP.

[45]  J. Shim,et al.  Chemical and hydrostatic pressure effect on charge density waves of SmNiC2 , 2013 .

[46]  P. Garcia,et al.  Advances in first-principles modelling of point defects in UO2: f electron correlations and the issue of local energy minima , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[48]  H. Harima,et al.  Fermi Surface and Superconducting Properties of Non-centrosymmetric LaNiC2 , 2012 .

[49]  S. Shimomura,et al.  Magnetic field switching of the charge-density-wave state in the lanthanide intermetallic SmNiC 2 , 2012 .

[50]  Yanagisawa Takashi,et al.  Nonunitary Triplet Superconductivity in the Noncentrosymmetric Rare-Earth Compound LaNiC2 , 2012 .

[51]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[52]  S. Shimomura,et al.  Successive Transition in Rare-earth Intermetallic Compound GdNiC2 , 2011 .

[53]  J. Laverock,et al.  Electronic structure of RNiC2 (R=Sm, Gd, and Nd) intermetallic compounds , 2009, 0903.1814.

[54]  M. Mizumaki,et al.  Charge-density-wave destruction and ferromagnetic order in SmNiC2. , 2009, Physical review letters.

[55]  R. Cywinski,et al.  Evidence for time-reversal symmetry breaking in the noncentrosymmetric superconductor LaNiC2. , 2009, Physical review letters.

[56]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[57]  M. Kosaka,et al.  Magnetic properties of single-crystalline RNiC2 compounds (R = Ce, Pr, Nd and Sm) , 1998 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  S. Matsuo,et al.  Antiferromagnetism of GdCoC2 and GdNiC2 intermetallics studied by magnetization measurement and 155Gd Mössbauer spectroscopy , 1996 .

[60]  Y. Yao,et al.  Superconductivity in the Ni based ternary carbide LaNiC2 , 1996 .

[61]  T. Ebel,et al.  GdRuC2, a Ternary Carbide with Filled NiAs Structure , 1995 .

[62]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[63]  W. Jeitschko,et al.  Structural, Chemical, and Physical Properties of Rare-Earth Metal Rhodium Carbides LnRhC2 (Ln: La, Ce, Pr, Nd, Sm). , 1990 .

[64]  W. Jeitschko,et al.  Structural, chemical, and physical properties of rare-earth metal rhodium carbides LnRhC2 (Ln = La, Ce, Pr, Nd, Sm) , 1989 .

[65]  R. Eibler,et al.  THE TEMPERATURE DEPENDENCE OF THE ANISOTROPY FIELD IN R2Fe14B COMPOUNDS (R = Y, La, Ce, Pr, Nd, Gd, Ho, Lu) , 1985 .

[66]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[67]  D. Friedan A proof of the Nielsen-Ninomiya theorem , 1982 .

[68]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .