PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing

This paper presents PointWeb, a new approach to extract contextual features from local neighborhood in a point cloud. Unlike previous work, we densely connect each point with every other in a local neighborhood, aiming to specify feature of each point based on the local region characteristics for better representing the region. A novel module, namely Adaptive Feature Adjustment (AFA) module, is presented to find the interaction between points. For each local region, an impact map carrying element-wise impact between point pairs is applied to the feature difference map. Each feature is then pulled or pushed by other features in the same region according to the adaptively learned impact indicators. The adjusted features are well encoded with region information, and thus benefit the point cloud recognition tasks, such as point cloud segmentation and classification. Experimental results show that our model outperforms the state-of-the-arts on both semantic segmentation and shape classification datasets.

[1]  Kaleem Siddiqi,et al.  Local Spectral Graph Convolution for Point Set Feature Learning , 2018, ECCV.

[2]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[3]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[5]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[7]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[9]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Li Xu,et al.  Stereo Matching: An Outlier Confidence Approach , 2008, ECCV.

[13]  Martin Simonovsky,et al.  Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[16]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[17]  C. Qi Deep Learning on Point Sets for 3 D Classification and Segmentation , 2016 .

[18]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[19]  Raquel Urtasun,et al.  Deep Parametric Continuous Convolutional Neural Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Leonidas J. Guibas,et al.  3D-Assisted Feature Synthesis for Novel Views of an Object , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  Ulrich Neumann,et al.  Recurrent Slice Networks for 3D Segmentation of Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[23]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[27]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[32]  Silvio Savarese,et al.  SEGCloud: Semantic Segmentation of 3D Point Clouds , 2017, 2017 International Conference on 3D Vision (3DV).

[33]  Vladlen Koltun,et al.  Tangent Convolutions for Dense Prediction in 3D , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).