Recursive Identification of Multi-Input Multi-Output Errors-in-Variables Hammerstein Systems

The note considers the identification of multi-input multi-output errors-in-variables Hammerstein systems, in which both the input and output can be observed but with additive noises being ARMA processes with unknown coefficients. With the help of stochastic approximation combined with the deconvolution kernel function, the recursive algorithms are proposed for estimating coefficients of the linear subsystem and for the values of the nonlinear function. Under some reasonable conditions, all the estimates are proved to converge to the true values with probability one. These results include identification of the errors-in-variables linear systems as a special case. A simulation example is given justifying the theoretical analysis.

[1]  Wen-Xiao Zhao,et al.  Recursive Identification for Hammerstein System with ARX Subsystem , 2006, 2006 Chinese Control Conference.

[2]  Han-Fu Chen Stochastic approximation and its applications , 2002 .

[3]  Johan A. K. Suykens,et al.  Identification of MIMO Hammerstein models using least squares support vector machines , 2005, Autom..

[4]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  A. Mokkadem Mixing properties of ARMA processes , 1988 .

[6]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[7]  Han-Fu Chen,et al.  Hankel matrices for system identification , 2014 .

[8]  Jungsang Kim,et al.  Digital predistortion of wideband signals based on power amplifier model with memory , 2001 .

[9]  Han-Fu Chen,et al.  Pathwise convergence of recursive identification algorithms for Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[10]  Han-Fu Chen,et al.  Identification of errors-in-variables systems with ARMA observation noises , 2008, Syst. Control. Lett..

[11]  Kang Li,et al.  Convergence of the iterative algorithm for a general Hammerstein system identification , 2010, Autom..

[12]  Jenő Hetthéssy,et al.  Identification of nonlinear errors-in-variables models , 2002 .

[13]  Graham C. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2008, Autom..

[14]  Han-Fu Chen,et al.  Recursive identification for Wiener-Hammerstein system , 2011, Proceedings of the 30th Chinese Control Conference.

[15]  Jianqing Fan,et al.  Parametric Nonlinear Time Series Models , 2003 .

[16]  Han-Fu Chen,et al.  Recursive identification for MIMO Hammerstein systems , 2010, Proceedings of the 29th Chinese Control Conference.

[17]  V. Cerone,et al.  Bounded error identification of Hammerstein systems through sparse polynomial optimization , 2012, Autom..

[18]  Francisco Jurado,et al.  A method for the identification of solid oxide fuel cells using a Hammerstein model , 2006 .

[19]  Han-Fu Chen,et al.  Recursive Identification of MIMO Wiener Systems , 2013, IEEE Transactions on Automatic Control.

[20]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[21]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[22]  Han-Fu Chen,et al.  Recursive identification for multivariate errors-in-variables systems , 2007, Autom..

[23]  Laura Giarré,et al.  Identification of approximated hammerstein models in a worst-case setting , 2002, IEEE Trans. Autom. Control..

[24]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[25]  Fouad Giri,et al.  Frequency Identification of Nonparametric Wiener Systems , 2010 .

[26]  H. Robbins A Stochastic Approximation Method , 1951 .

[27]  Dennis S. Bernstein,et al.  Extended least-correlation estimates for errors-in-variables non-linear models , 2007, Int. J. Control.

[28]  Xiao-Li Hu,et al.  Recursive Identification of Wiener-Hammerstein Systems with Nonparametric Nonlinearity , 2013 .

[29]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..