Reactive control as a substrate for telerobotic systems

Reactive control, a recently emerged paradigm for guiding robots in unstructured and dynamic environments, and related work are reviewed. Pertinent telerobotics research for intelligent navigation is briefly surveyed. A scheme-based reactive control system that allows teleoperators to direct a mobile platform without undue concern for local obstacle avoidance is described. By using an analog of the potential field methodology, repulsive forces are constructed around nearby obstacles, allowing the robot to avoid them and enabling the telerobot operator to concentrate on the more global aspects of the mission. The structure for this paradigm enables real-time computation. The principles are extendible to manipulator operations. Results of robot simulation and experiments that demonstrate the concepts described are reported.<<ETX>>

[1]  Yoram Koren,et al.  Teleautonomous guidance for mobile robots , 1990, IEEE Trans. Syst. Man Cybern..

[2]  Leslie Pack Kaelbling,et al.  An Architecture for Intelligent Reactive Systems , 1987 .

[3]  Tomomasa Sato,et al.  Language-aided robotic teleoperation system (LARTS) for advanced teleoperation , 1987, IEEE Journal on Robotics and Automation.

[4]  Richard A. Volz,et al.  Teleautonomous systems: projecting and coordinating intelligent action at a distance , 1990, IEEE Trans. Robotics Autom..

[5]  Rodney A. Brooks,et al.  The whole iguana , 1989 .

[6]  David W. Payton,et al.  An architecture for reflexive autonomous vehicle control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Erann Gat,et al.  Path planning and execution monitoring for a planetary rover , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[9]  Marc Glenn Slack,et al.  Situationally driven local navigation for mobile robots , 1990 .

[10]  Ronald C. Arkin,et al.  Reactive inclinometer-based mobile robot navigation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[11]  Brian H. Wilcox,et al.  Fusing Global Navigation With Computer-Aided Remote Driving Of Robotic Vehicles , 1987, Other Conferences.

[12]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[13]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[14]  Randal C. Nelson,et al.  Image understanding at the University of Rochester , 1989 .

[15]  Ronald C. Arkin Three-dimensional motor schema based navigation , 1989 .

[16]  Robin R. Murphy,et al.  Autonomous navigation in a manufacturing environment , 1990, IEEE Trans. Robotics Autom..

[17]  James S. Albus,et al.  NASANBS standard reference model for telerobot control system architecture (NASREM) (supersedes NBS Technical Note 1235 issued July 1987) , 1989 .

[18]  Ronald C. Arkin,et al.  Integrating behavioral, perceptual, and world knowledge in reactive navigation , 1990, Robotics Auton. Syst..

[19]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[20]  Blake Hannaford,et al.  Telerobotics: Display, control, and communication problems , 1987, IEEE J. Robotics Autom..

[21]  Paul Milgram,et al.  Teleoperator control models: effects of time delay and imperfect system knowledge , 1990, IEEE Trans. Syst. Man Cybern..

[22]  Ronald C. Arkin,et al.  Towards the Unification of Navigational Planning and Reactive Control , 1989 .

[23]  Ronald C. Arkin,et al.  The impact of cybernetics on the design of a mobile robot system: a case study , 1990, IEEE Trans. Syst. Man Cybern..

[24]  Jonathan H. Connell,et al.  A colony architecture for an artificial creature , 1989 .

[25]  David W. Payton,et al.  Internalized plans: A representation for action resources , 1990, Robotics Auton. Syst..