A fingerprint based metric for measuring similarities of crystalline structures.

Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.

[1]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[2]  Jörg Behler,et al.  Constructing high‐dimensional neural network potentials: A tutorial review , 2015 .

[3]  Stefan Goedecker,et al.  Novel structural motifs in low energy phases of LiAlH4. , 2012, Physical review letters.

[4]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[5]  S. Goedecker,et al.  Metrics for measuring distances in configuration spaces. , 2013, The Journal of chemical physics.

[6]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[7]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[8]  Patrizia Calaminici,et al.  The discovery of unexpected isomers in sodium heptamers by Born-Oppenheimer molecular dynamics. , 2009, The Journal of chemical physics.

[9]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[10]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[11]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[12]  Michele Ceriotti,et al.  i-PI: A Python interface for ab initio path integral molecular dynamics simulations , 2014, Comput. Phys. Commun..

[13]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[14]  Stefan Goedecker,et al.  Conducting boron sheets formed by the reconstruction of the α-boron (111) surface. , 2013, Physical review letters.

[15]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[16]  P D Adams,et al.  Numerically stable algorithms for the computation of reduced unit cells. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[17]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[18]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[19]  Frank J. J. Leusen,et al.  Computer Simulation to Predict Possible Crystal Polymorphs , 2007 .

[20]  Quan Li,et al.  Materials discovery via CALYPSO methodology , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  David C. Lonie,et al.  Identifying duplicate crystal structures: XtalComp, an open-source solution , 2012, Comput. Phys. Commun..

[22]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Stefano Curtarolo,et al.  High-throughput and data mining with ab initio methods , 2004 .

[25]  James F. Scott,et al.  Transformation processes in LaAlO3: neutron diffraction, dielectric, thermal, optical and Raman studies , 2005 .

[26]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[27]  Stefan Goedecker,et al.  Low-density silicon allotropes for photovoltaic applications , 2015, 1504.06372.

[28]  Herbert J Bernstein,et al.  The geometry of Niggli reduction: SAUC - search of alternative unit cells. , 2014, Journal of applied crystallography.

[29]  Yanming Ma,et al.  Spiral chain O4 form of dense oxygen , 2011, Proceedings of the National Academy of Sciences.

[30]  Lusann Yang,et al.  Proposed definition of crystal substructure and substructural similarity , 2014 .

[31]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[32]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[33]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[34]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[35]  O. A. V. Lilienfeld,et al.  First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties , 2012, 1209.5033.

[36]  Yanming Ma,et al.  Reactions of xenon with iron and nickel are predicted in the Earth's inner core. , 2013, Nature chemistry.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  R. Wehrens,et al.  A generalized expression for the similarity of spectra: application to powder diffraction pattern classification , 2001, J. Comput. Chem..

[39]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[40]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[41]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[42]  Arthur F. Voter,et al.  Highly optimized tight-binding model of silicon , 1997 .

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  Michele Ceriotti,et al.  Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond. , 2014, The Journal of chemical physics.

[45]  J. C. Schön,et al.  Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part II , 2001 .

[46]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[47]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[48]  Jan Kroon,et al.  Fast clustering of equivalent structures in crystal structure prediction , 1997, J. Comput. Chem..

[49]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[50]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[51]  B. Rohde,et al.  Continuous similarity measure between nonoverlapping X‐ray powder diagrams of different crystal modifications , 1993, J. Comput. Chem..

[52]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[53]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[54]  M. Rupp,et al.  Machine Learning for Quantum Mechanical Properties of Atoms in Molecules , 2015, 1505.00350.

[55]  D. W. Bassett,et al.  Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces , 1978 .

[56]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .