Supplement to \Linear and Nonlinear Programming"

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[3]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[4]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[5]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[6]  D. Bayer,et al.  The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .

[7]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[8]  Reha H. Tütüncü,et al.  An infeasible-interior-point potential-reduction algorithm for linear programming , 1999, Math. Program..

[9]  C. C. Gonzaga,et al.  An Algorithm for Solving Linear Programming Problems in O(n 3 L) Operations , 1989 .

[10]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[11]  Michael J. Todd A Low Complexity Interior-Point Algorithm for Linear Programming , 1992, SIAM J. Optim..

[12]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[13]  Levent Tunçel,et al.  Constant potential primal—dual algorithms: A framework , 1994, Math. Program..

[14]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[15]  D. Griffel Linear programming 2: Theory and extensions , by G. B. Dantzig and M. N. Thapa. Pp. 408. £50.00. 2003 ISBN 0 387 00834 9 (Springer). , 2004, The Mathematical Gazette.

[16]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[17]  A. J. Goldman,et al.  Polyhedral Convex Cones , 1956 .

[18]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[19]  Z. Luo,et al.  Conic convex programming and self-dual embedding , 1998 .

[20]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1987, Math. Program..

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[23]  Farid Alizadeh,et al.  Combinatorial Optimization with Semi-Definite Matrices , 1992, IPCO.

[24]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[25]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[26]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[27]  Timothy H. McNicholl Review of "Complexity and real computation" by Blum, Cucker, Shub, and Smale. Springer-Verlag. , 2001, SIGA.

[28]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[29]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[30]  Pravin M. Vaidya,et al.  An algorithm for linear programming which requires O(((m+n)n2+(m+n)1.5n)L) arithmetic operations , 1990, Math. Program..

[31]  C. C. Gonzaga,et al.  An (O√(n) L)-Iteration Large-Step Primal-Dual Affine Algorithm for Linear Programming , 1992, SIAM J. Optim..

[32]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[33]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[34]  R. Saigal Linear Programming: A Modern Integrated Analysis , 1995 .

[35]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[36]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[37]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[38]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[39]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[40]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[41]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[42]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[43]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[44]  Tamás Terlaky,et al.  A Long-step barrier method for convex quadratic programming , 1993, Algorithmica.

[45]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[46]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[47]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[48]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[49]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[50]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[51]  Robert M. Freund,et al.  Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function , 1991, Math. Program..

[52]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[53]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[54]  Yinyu Ye,et al.  On a homogeneous algorithm for the monotone complementarity problem , 1999, Math. Program..

[55]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[56]  Donald Goldfarb,et al.  A primal projective interior point method for linear programming , 1991, Math. Program..

[57]  M. Padberg,et al.  Linear Optimization and Extensions: Problems and Solutions , 2001 .

[58]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[59]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[60]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[61]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[62]  Robert E. Bixby,et al.  Progress in Linear Programming , 1993 .

[63]  Yin Zhang,et al.  On polynomiality of the Mehrotra-type predictor—corrector interior-point algorithms , 1995, Math. Program..