Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA ?

The thermal Sunyaev-Zel’dovich (tSZ) e ect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0:89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-m telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster’s radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5:96 +1:02 0:79 10 14 M within the radius R500 = 930 +50 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster’s redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs.

[1]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[2]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[3]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[4]  P. Ade,et al.  Performance and calibration of the NIKA camera at the IRAM 30 m telescope , 2014, 1402.0260.

[5]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[6]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[7]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[8]  N. Ponthieu,et al.  Improved mm-wave photometry for kinetic inductance detectors , 2013 .

[9]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[10]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[11]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[12]  A. Conte,et al.  X‐ray calibration of Sunyaev–Zel’dovich scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra , 2011, 1108.1029.

[13]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[14]  O. Bourrion,et al.  Electronics and data acquisition demonstrator for a kinetic inductance camera , 2011, 1102.1314.

[15]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[16]  T. Mroczkowski A NEW APPROACH TO OBTAINING CLUSTER MASS FROM SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS , 2011, 1101.2176.

[17]  S. R. Dicker,et al.  MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV–ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS , 2010, 1010.5494.

[18]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[19]  G. Giovannini,et al.  Relativistic plasma and ICM/radio source interaction , 2010, Proceedings of the International Astronomical Union.

[20]  S. R. Hildebrandt,et al.  MILCA, a modified internal linear combination algorithm to extract astrophysical emissions from multifrequency sky maps , 2010, 1007.1149.

[21]  J. J. A. Baselmans,et al.  NIKA: A millimeter-wave kinetic inductance camera , 2010, 1004.2209.

[22]  H. Böhringer,et al.  X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories , 2010 .

[23]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[24]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[25]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[26]  J. Tyson,et al.  DARK MATTER IN THE GALAXY CLUSTER CL J1226+3332 AT z = 0.89 , 2008, 0810.0709.

[27]  J. Carlstrom,et al.  APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV–ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS , 2008, 0809.5077.

[28]  M. Postman,et al.  THE ELLIPTICITIES OF CLUSTER EARLY-TYPE GALAXIES FROM z ∼ 1 TO z ∼ 0: NO EVOLUTION IN THE OVERALL DISTRIBUTION OF BULGE-TO-DISK RATIOS , 2008, 0811.1986.

[29]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[30]  Amber D. Miller,et al.  Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel’dovich Array , 2006, astro-ph/0610115.

[31]  U. Birmingham,et al.  Deep XMM-Newton and Chandra Observations of Cl J1226.9+3332: A Detailed X-Ray Mass Analysis of a z = 0.89 Galaxy Cluster , 2006, astro-ph/0609690.

[32]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[33]  K. Dawson,et al.  Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2005, astro-ph/0512349.

[34]  D. Nagai,et al.  The Impact of Galaxy Formation on the Sunyaev-Zel'dovich Effect of Galaxy Clusters , 2005, astro-ph/0512208.

[35]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[36]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[37]  Institute for Astronomy,et al.  An XMM-Newton observation of the massive, relaxed galaxy cluster ClJ1226.9+3332 at z=0.89 , 2004, astro-ph/0403521.

[38]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[39]  K. Dawson,et al.  Sunyaev-Zeldovich Effect Imaging of Massive Clusters of Galaxies at Redshift z > 0.8 , 2000, astro-ph/0012052.

[40]  J. Mohr,et al.  The Sunyaev-Zel'dovich Effect , 2000 .

[41]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[42]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[43]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[44]  F. Zwicky Republication of: The redshift of extragalactic nebulae , 1933 .