Optimal Real-time Bidding Policies for Contract Fulfillment in Second Price Auctions

We study a real-time bidding problem resulting from a set of contractual obligations stipulating that a firm win a specified number of heterogenous impressions or ad placements over a defined duration in a realtime auction. The contracts specify item targeting criteria (which may be overlapping), and a supply requirement. Using the Pontryagin maximum principle, we show that the resulting continuous time and time inhomogenous planning problem can be reduced into a finite dimensional convex optimization problem and solved to optimality. In addition, we provide algorithms to update the bidding plan over time via a receding horizon. Finally, we provide numerical results based on real data and show a connection to production-transportation problems. keywords Computational Advertising; Realtime Bidding; Optimal Control; Auction Theory; Second Price Auction; Production Transportation Problem Acknowledgement We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number 518418-2018]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence 518418-2018]. Relevant code to be made available at github.com/RJTK 1 ar X iv :2 01 2. 10 00 1v 1 [ ee ss .S Y ] 1 8 D ec 2 02 0

[1]  L. Cooper,et al.  The Transportation-Production Problem , 1974 .

[2]  On the Substitution Rule for Lebesgue-Stieltjes Integrals , 2011, 1104.1422.

[3]  Jun Wang,et al.  Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising , 2016, KDD.

[4]  Jun Wang,et al.  Real-Time Bidding by Reinforcement Learning in Display Advertising , 2017, WSDM.

[5]  Jun Wang,et al.  Real-time bidding for online advertising: measurement and analysis , 2013, ADKDD '13.

[6]  Ming-Syan Chen,et al.  Predicting Winning Price in Real Time Bidding with Censored Data , 2015, KDD.

[7]  Wei Li,et al.  Bid landscape forecasting in online ad exchange marketplace , 2011, KDD.

[8]  Jun Wang,et al.  Real-Time Bidding Benchmarking with iPinYou Dataset , 2014, ArXiv.

[9]  Hao Wang,et al.  Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising , 2018, CIKM.

[10]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[11]  R. Srikant,et al.  Bidding with limited statistical knowledge in online auctions , 2014, PERV.

[12]  Noam Nisan,et al.  Doubleclick Ad Exchange Auction , 2012, ArXiv.

[13]  Weinan Zhang,et al.  Optimal real-time bidding for display advertising , 2014, KDD.

[14]  Gabriel Y. Weintraub,et al.  Repeated Auctions with Budgets in Ad Exchanges: Approximations and Design , 2014, Manag. Sci..

[15]  Andreas Winkelbauer,et al.  Moments and Absolute Moments of the Normal Distribution , 2012, ArXiv.

[16]  Carl F. Mela,et al.  Online Display Advertising Markets: A Literature Review and Future Directions , 2019, Inf. Syst. Res..

[17]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[18]  J Frank Sharp,et al.  A Decomposition Algorithm for Solving the Multifacility Production-Transportation Problem with Nonlinear Production Costs , 1970 .

[19]  Tie-Yan Liu,et al.  Joint optimization of bid and budget allocation in sponsored search , 2012, KDD.

[20]  Peter Key,et al.  Optimal Bidding Strategies and Equilibria in Dynamic Auctions with Budget Constraints , 2013 .

[21]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[22]  Jun Wang,et al.  Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting , 2016, Found. Trends Inf. Retr..

[23]  Nicolas Perrin,et al.  Recurrent Neural Networks for Stochastic Control in Real-Time Bidding , 2019, KDD.

[24]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[25]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[26]  Basil Kouvaritakis,et al.  Model Predictive Control: Classical, Robust and Stochastic , 2015 .

[27]  Xuehua Shen,et al.  iPinYou Global RTB Bidding Algorithm Competition Dataset , 2014, ADKDD'14.

[28]  Ravi Mazumdar,et al.  Performance Modeling, Loss Networks, and Statistical Multiplexing , 2010, Performance Modeling, Loss Networks, and Statistical Multiplexing.

[29]  Niklas Karlsson,et al.  Control problems in online advertising and benefits of randomized bidding strategies , 2016, Eur. J. Control.

[30]  Niklas Karlsson,et al.  Adaptive control using Heisenberg bidding , 2014, 2014 American Control Conference.

[31]  Jun Wang,et al.  Feedback Control of Real-Time Display Advertising , 2016, WSDM.

[32]  Aritra Ghosh,et al.  Scalable Bid Landscape Forecasting in Real-time Bidding , 2019, ECML/PKDD.

[33]  Jun Wang,et al.  Functional Bid Landscape Forecasting for Display Advertising , 2016, ECML/PKDD.

[34]  Shuai Yuan,et al.  A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in Display Advertising , 2014, ADKDD'14.

[35]  Robert Zeithammer Soft Floors in Auctions , 2019, Manag. Sci..

[36]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.