Evaluation of CMIP6 DECK Experiments With CNRM‐CM6‐1

This paper describes the main characteristics of CNRM‐CM6‐1, the fully coupled atmosphere‐ocean general circulation model of sixth generation jointly developed by Centre National de Recherches Météorologiques (CNRM) and Cerfacs for the sixth phase of the Coupled Model Intercomparison Project 6 (CMIP6). The paper provides a description of each component of CNRM‐CM6‐1, including the coupling method and the new online output software. We emphasize where model's components have been updated with respect to the former model version, CNRM‐CM5.1. In particular, we highlight major improvements in the representation of atmospheric and land processes. A particular attention has also been devoted to mass and energy conservation in the simulated climate system to limit long‐term drifts. The climate simulated by CNRM‐CM6‐1 is then evaluated using CMIP6 historical and Diagnostic, Evaluation and Characterization of Klima (DECK) experiments in comparison with CMIP5 CNRM‐CM5.1 equivalent experiments. Overall, the mean surface biases are of similar magnitude but with different spatial patterns. Deep ocean biases are generally reduced, whereas sea ice is too thin in the Arctic. Although the simulated climate variability remains roughly consistent with CNRM‐CM5.1, its sensitivity to rising CO2 has increased: the equilibrium climate sensitivity is 4.9 K, which is now close to the upper bound of the range estimated from CMIP5 models.

[1]  Larry W. Thomason,et al.  A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018 , 2020 .

[2]  Bertrand Decharme,et al.  Recent Changes in the ISBA‐CTRIP Land Surface System for Use in the CNRM‐CM6 Climate Model and in Global Off‐Line Hydrological Applications , 2019, Journal of Advances in Modeling Earth Systems.

[3]  F. Roquet,et al.  Toward global maps of internal tide energy sinks , 2019, Ocean Modelling.

[4]  A. Voldoire,et al.  Evaluating Marine Stratocumulus Clouds in the CNRM‐CM6‐1 Model Using Short‐Term Hindcasts , 2019, Journal of Advances in Modeling Earth Systems.

[5]  Chris Derksen,et al.  Canadian snow and sea ice: historical trends and projections , 2018 .

[6]  J. Dufresne,et al.  An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A) , 2018 .

[7]  D. Dommenget,et al.  A Caveat Note on Tuning in the Development of Coupled Climate Models , 2018 .

[8]  D. Saint‐Martin,et al.  Assessment of CNRM coupled ocean-atmosphere model sensitivity to the representation of aerosols , 2018, Climate Dynamics.

[9]  Véronique Ducrocq,et al.  SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales , 2017 .

[10]  C. Cassou,et al.  Teleconnection Between Atlantic Multidecadal Variability and European Temperature: Diversity and Evaluation of the Coupled Model Intercomparison Project Phase 5 Models , 2017 .

[11]  E. Hawkins,et al.  Decadal Climate Variability and Predictability: Challenges and Opportunities , 2017 .

[12]  G. Hegerl,et al.  Beyond equilibrium climate sensitivity , 2017 .

[13]  Thomas M. Smith,et al.  Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons , 2017 .

[14]  Sophie Valcke,et al.  Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0 , 2017 .

[15]  A. Gnanadesikan,et al.  Global Atmospheric Teleconnections and Multidecadal Climate Oscillations Driven by Southern Ocean Convection , 2017 .

[16]  D. Smeed,et al.  Atlantic Meridional Overturning Circulation (AMOC) , 2017 .

[17]  Gurvan Madec,et al.  Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6 , 2017 .

[18]  Paul Charbonneau,et al.  Solar Forcing for CMIP6 (v3.1) , 2016 .

[19]  Dean Roemmich,et al.  An Argo mixed layer climatology and database , 2017 .

[20]  Karen A. McKinnon,et al.  The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly? , 2017 .

[21]  R. Caballero,et al.  Representation of Arctic Moist Intrusions in CMIP5 Models and Implications for Winter Climate Biases , 2017 .

[22]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[23]  G. Danabasoglu,et al.  Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models , 2017 .

[24]  N. Salzmann,et al.  Climate Change and Permafrost , 2017 .

[25]  K. Carslaw,et al.  Aerosols in the Pre-industrial Atmosphere , 2017, Current Climate Change Reports.

[26]  Andrea Stenke,et al.  Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) , 2017 .

[27]  C. Cassou,et al.  Influence of ENSO on the Pacific decadal oscillation in CMIP models , 2017, Climate Dynamics.

[28]  P. Kushner,et al.  Snow cover response to temperature in observational and climate model ensembles , 2017 .

[29]  Ingo Richter,et al.  Challenges and Prospects for Reducing Coupled Climate Model SST Biases in the Eastern Tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group , 2016 .

[30]  I. Musat,et al.  Inter‐model comparison of subseasonal tropical variability in aquaplanet experiments: Effect of a warm pool , 2016 .

[31]  Stefan Reimann,et al.  Historical greenhouse gas concentrations for climate modelling (CMIP6) , 2016 .

[32]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[33]  Robert Frouin,et al.  Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models , 2016, Journal of geophysical research. Oceans.

[34]  N. Keenlyside,et al.  Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? , 2016 .

[35]  Michel Rixen,et al.  The Decadal Climate Prediction Project (DCPP) contribution to CMIP6 , 2016 .

[36]  William H. Lipscomb,et al.  Biogeochemistry of CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual zbgc_colpkg modifications to Version 5 , 2016 .

[37]  Bertrand Decharme,et al.  Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model , 2016 .

[38]  Jaap Schellekens,et al.  MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data , 2016 .

[39]  The Decadal Climate Prediction Project , 2016 .

[40]  G. Madec,et al.  The Impact of a Variable Mixing Efficiency on the Abyssal Overturning , 2016 .

[41]  M. Ollitrault,et al.  A direct determination of the World Ocean barotropic circulation , 2016 .

[42]  J. Dufresne,et al.  Air moisture control on ocean surface temperature, hidden key to the warm bias enigma , 2015 .

[43]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[44]  C. Delire,et al.  Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model , 2015 .

[45]  J. Lemieux,et al.  Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere-ice-ocean surface layer , 2015 .

[46]  F. Roquet,et al.  Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard , 2015 .

[47]  I. Richter Climate model biases in the eastern tropical oceans: causes, impacts and ways forward , 2015 .

[48]  Martine Michou,et al.  Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM Climate Model CNRM-CM6 , 2015 .

[49]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[50]  S. Griffies,et al.  Has coarse ocean resolution biased simulations of transient climate sensitivity? , 2014 .

[51]  J. Thepaut,et al.  Toward a Consistent Reanalysis of the Climate System , 2014 .

[52]  Martine Michou,et al.  Development and basic evaluation of a prognostic aerosol scheme in the CNRM Climate Model , 2014 .

[53]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[54]  C. Mechoso,et al.  A global perspective on CMIP5 climate model biases , 2014 .

[55]  S. Seneviratne,et al.  Systematic land climate and evapotranspiration biases in CMIP5 simulations , 2014, Geophysical research letters.

[56]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[57]  Patrick Heimbach,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states , 2014 .

[58]  C. Cassou,et al.  Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model , 2014, Climate Dynamics.

[59]  C. Talandier,et al.  On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5 : a mean state comparison , 2013 .

[60]  W. Collins,et al.  Evaluation of climate models , 2013 .

[61]  Jaclyn N. Brown,et al.  Climate Drift in the CMIP5 Models , 2013 .

[62]  Daehyun Kim,et al.  MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models , 2013 .

[63]  M. Déqué,et al.  Seasonal Forecasts of the Pan-Arctic Sea Ice Extent Using a GCM-Based Seasonal Prediction System , 2013 .

[64]  C. Cassou,et al.  Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences , 2013 .

[65]  P. J. Young,et al.  Long‐term ozone changes and associated climate impacts in CMIP5 simulations , 2013 .

[66]  I. Smith,et al.  The Hadley Circulation in Reanalyses: Climatology, Variability, and Change , 2013 .

[67]  N. Loeb,et al.  Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances , 2013 .

[68]  H. Douville,et al.  European temperatures in CMIP5: origins of present-day biases and future uncertainties , 2013, Climate Dynamics.

[69]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[70]  Y. Peings,et al.  How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? , 2013 .

[71]  U. Schneider,et al.  GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle , 2013, Theoretical and Applied Climatology.

[72]  Arthur H. Rosenfeld,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[73]  F. Matawa,et al.  Geoinformatics & Geostatistics: An Overview , 2013 .

[74]  J. Curry,et al.  Berkeley Earth Temperature Averaging Process , 2013 .

[75]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[76]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[77]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[78]  J. Christensen,et al.  Temperature dependent climate projection deficiencies in CMIP5 models , 2012 .

[79]  Alina Barbu,et al.  The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , 2012 .

[80]  Jean-Louis Roujean,et al.  ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models , 2012 .

[81]  S. Bony,et al.  The ‘too few, too bright’ tropical low‐cloud problem in CMIP5 models , 2012 .

[82]  Chris Derksen,et al.  Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections , 2012 .

[83]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[84]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[85]  François Lott,et al.  A stochastic parameterization of non‐orographic gravity waves: Formalism and impact on the equatorial stratosphere , 2012 .

[86]  S. Phipps,et al.  Climate drift in the CMIP3 models , 2012 .

[87]  Arthur H. Rosenfeld,et al.  A New Estimate of the AverageEarth Surface Land TemperatureSpanning 1753 to 2011 , 2013 .

[88]  J. P. Stachnik,et al.  A comparison of the Hadley circulation in modern reanalyses , 2011 .

[89]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[90]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .

[91]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[92]  Eric Bazile,et al.  Description of the sedimentation scheme used operationally in all Météo-France NWP models , 2011 .

[93]  E. Bazile,et al.  Description of the sedimentation scheme used operationally in all M´et´eo-France NWP models , 2011 .

[94]  J. Guérémy,et al.  A continuous buoyancy based convection scheme: one-and three-dimensional validation , 2011 .

[95]  Valerio Lucarini,et al.  ENERGETICS OF CLIMATE MODELS: NET ENERGY BALANCE AND MERIDIONAL ENTHALPY TRANSPORT , 2009, 0911.5689.

[96]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[97]  Anny Cazenave,et al.  Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage , 2010 .

[98]  M. Chipperfield,et al.  Results from a new linear O 3 scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM , 2010 .

[99]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[100]  Ekaterina Kourzeneva External data for lake parameterization in Numerical Weather Prediction and climate modeling , 2010 .

[101]  Rainer Feistel,et al.  The International Thermodynamic Equation Of Seawater 2010 (TEOS-10): Calculation and Use of Thermodynamic Properties , 2010 .

[102]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[103]  Bin Wang,et al.  MJO Simulation Diagnostics , 2009 .

[104]  R. Seager,et al.  Forced and Internal Twentieth-Century SST Trends in the North Atlantic* , 2009 .

[105]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[106]  M. Maqueda,et al.  An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids , 2009 .

[107]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2009 .

[108]  Sylvain Bouillon,et al.  Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation , 2009 .

[109]  G. Madec,et al.  Geothermal heating, diapycnal mixing and the abyssal circulation , 2008 .

[110]  Dongkyun Kim,et al.  Vector Routing for Delay Tolerant Networks , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[111]  Jure Cedilnik,et al.  A new sub-grid scale lift formulation in a mountain drag parameterisation scheme , 2008 .

[112]  H. V. D. Dool,et al.  A global monthly land surface air temperature analysis for 1948-present , 2008 .

[113]  G. Madec NEMO ocean engine , 2008 .

[114]  Jean-François Geleyn,et al.  An Approach for Convective Parameterization with Memory: Separating Microphysics and Transport in Grid-Scale Equations , 2007 .

[115]  Daniel Cariolle,et al.  A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[116]  Jean-Michel André,et al.  Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model , 2007 .

[117]  F. Joos,et al.  Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model , 2007, Proceedings of the National Academy of Sciences.

[118]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[119]  G. Meehl,et al.  Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis, edited by , 2022 .

[120]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[121]  Sophie Valcke,et al.  PRISM and ENES: a European approach to Earth system modelling , 2006, Concurr. Comput. Pract. Exp..

[122]  H. Eskes,et al.  Indicators of Antarctic ozone depletion , 2005 .

[123]  Chidong Zhang,et al.  Madden‐Julian Oscillation , 2005 .

[124]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[125]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[126]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[127]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[128]  A. Nikoghossian Radiative Transfer in Inhomogeneous Atmospheres. I , 2004 .

[129]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[130]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[131]  M. Holland,et al.  Polar amplification of climate change in coupled models , 2003 .

[132]  D. A. Rothrock,et al.  Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates , 2003 .

[133]  C. Wunsch,et al.  Large-Scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment , 2003 .

[134]  R. Bermejo,et al.  A Conservative Quasi-Monotone Semi-Lagrangian Scheme , 2002 .

[135]  D. Salas Mélia,et al.  A global coupled sea ice–ocean model , 2002 .

[136]  Philippe Lopez,et al.  Implementation and validation of a new prognostic large‐scale cloud and precipitation scheme for climate and data‐assimilation purposes , 2002 .

[137]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[138]  Christopher S. Bretherton,et al.  A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers , 2001 .

[139]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[140]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[141]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[142]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[143]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[144]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[145]  B. Liebmann,et al.  Description of a complete (interpolated) outgoing longwave radiation dataset , 1996 .

[146]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[147]  J. Royer,et al.  A statistical cloud scheme for use in an AGCM , 1993 .

[148]  M. Mcphee Turbulent Heat Flux in the Upper Ocean Under Sea Ice , 1992 .

[149]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[150]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[151]  A. Morel,et al.  Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications , 1989 .

[152]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[153]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[154]  J. Deardorff,et al.  Subgrid-Scale Condensation in Models of Nonprecipitating Clouds , 1977 .

[155]  Thomas C. Grenfell,et al.  The Optical Properties of Ice and Snow in the Arctic Basin , 1977, Journal of Glaciology.

[156]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[157]  S. Jacobs,et al.  Ross sea oceanography and antarctic bottom water formation , 1970 .