Mathematical Models of Visual Perception Based on Cortical Architectures
暂无分享,去创建一个
[1] A. Sarti,et al. From neural oscillations to variational problems in the visual cortex , 2003, Journal of Physiology-Paris.
[2] S. Zucker,et al. The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .
[3] Pietro Perona,et al. A Factorization Approach to Grouping , 1998, ECCV.
[4] Giovanna Citti,et al. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.
[5] Michael Felsberg,et al. Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.
[6] S. Palmer,et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.
[7] D. Hubel,et al. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.
[8] W. Hoffman. The visual cortex is a contact bundle , 1989 .
[9] D. Fitzpatrick,et al. Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.
[10] D. Hubel,et al. Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[11] Chisachi Kato,et al. Visualization of aerodynamic noise source in the wake of a rotating cylinder , 2007, J. Vis..
[12] Steven W. Zucker,et al. Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[13] David J. Field,et al. Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.
[14] R. Duits,et al. Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .
[15] R. Duits,et al. Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .
[16] Desmond J. Higham,et al. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..
[17] D. Mumford. Elastica and Computer Vision , 1994 .
[18] Giovanna Citti,et al. Cortical Spatiotemporal Dimensionality Reduction for Visual Grouping , 2014, Neural Computation.
[19] Jean-Paul Gauthier,et al. Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion , 2010, SIAM J. Control. Optim..
[20] Giovanna Citti,et al. The symplectic structure of the primary visual cortex , 2008, Biological Cybernetics.
[21] L. Florack,et al. Evolution equations on Gabor transforms and their applications , 2011, 1110.6087.
[22] Giovanna Citti,et al. Image Completion Using a Diffusion Driven Mean Curvature Flowin A Sub-Riemannian Space , 2008, VISAPP.
[23] Lance R. Williams,et al. Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.
[24] J. Petitot,et al. Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .
[25] S. Zucker,et al. Differential Geometry from the Frenet Point of View: Boundary Detection, Stereo, Texture and Color , 2006, Handbook of Mathematical Models in Computer Vision.
[26] B. H. Romeny,et al. Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.
[27] J. Koenderink,et al. Representation of local geometry in the visual system , 1987, Biological Cybernetics.
[28] A. Sarti,et al. A model of natural image edge co-occurrence in the rototranslation group. , 2010, Journal of vision.
[29] Giovanna Citti,et al. The constitution of visual perceptual units in the functional architecture of V1 , 2014, Journal of Computational Neuroscience.