Vision-based control laws for distributed flocking of nonholonomic agents

We study the problem of vision-based flocking and coordination of a group of kinematic agents in 2 and 3 dimensions. It is shown that in the absence of communication among agents, and by using only visual information, a group of mobile agents can align their velocity vectors and move in a formation. A coordinate-free control law is used to develop a vision-based input for each nonholonomic agent. The vision-based input does not rely on heading measurements, but only requires measurements of bearing, optical flow and time-to-collision, all of which can be efficiently measured

[1]  Ali Jadbabaie,et al.  Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents , 2007, IEEE Transactions on Automatic Control.

[2]  Gaurav S. Sukhatme,et al.  Mobile robot navigation using a sensor network , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Bernhard Nebel,et al.  CS Freiburg: coordinating robots for successful soccer playing , 2002, IEEE Trans. Robotics Autom..

[4]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[5]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[6]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[7]  Randal W. Beard,et al.  Synchronization of Information in Distributed Multiple Vehicle Coordinated Control , 2003 .

[8]  E. Riseman,et al.  Panoramic virtual stereo vision of cooperative mobile robots for localizing 3D moving objects , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[9]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[10]  Maria L. Gini,et al.  Performance of a distributed robotic system using shared communications channels , 2002, IEEE Trans. Robotics Autom..

[11]  David N. Lee,et al.  Plummeting gannets: a paradigm of ecological optics , 1981, Nature.

[12]  Kostas Daniilidis,et al.  Vision-based Distributed Coordination and Flocking of Multi-agent Systems , 2005, Robotics: Science and Systems.

[13]  B. Frost,et al.  Time to collision is signalled by neurons in the nucleus rotundus of pigeons , 1992, Nature.

[14]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[15]  S. Shankar Sastry,et al.  Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[17]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[18]  Gaurav S. Sukhatme,et al.  Lateral and Longitudinal Stability for Decentralized Formation Control , 2004, DARS.

[19]  Andrew Blake,et al.  Surface Orientation and Time to Contact from Image Divergence and Deformation , 1992, ECCV.

[20]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..