Meta-analysis in human neuroimaging: computational modeling of large-scale databases.

Spatial normalization--applying standardized coordinates as anatomical addresses within a reference space--was introduced to human neuroimaging research nearly 30 years ago. Over these three decades, an impressive series of methodological advances have adopted, extended, and popularized this standard. Collectively, this work has generated a methodologically coherent literature of unprecedented rigor, size, and scope. Large-scale online databases have compiled these observations and their associated meta-data, stimulating the development of meta-analytic methods to exploit this expanding corpus. Coordinate-based meta-analytic methods have emerged and evolved in rigor and utility. Early methods computed cross-study consensus, in a manner roughly comparable to traditional (nonimaging) meta-analysis. Recent advances now compute coactivation-based connectivity, connectivity-based functional parcellation, and complex network models powered from data sets representing tens of thousands of subjects. Meta-analyses of human neuroimaging data in large-scale databases now stand at the forefront of computational neurobiology.

[1]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[2]  Wei Huang,et al.  Translational control in synaptic plasticity and cognitive dysfunction. , 2014, Annual review of neuroscience.

[3]  Simon B Eickhoff,et al.  Brain structure anomalies in autism spectrum disorder—a meta‐analysis of VBM studies using anatomic likelihood estimation , 2012, Human brain mapping.

[4]  E. Bullmore,et al.  Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis , 2008, Biological Psychiatry.

[5]  P. Fox Broca's area: Motor encoding in somatic space , 1995, Behavioral and Brain Sciences.

[6]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[7]  Angela R. Laird,et al.  Automated regional behavioral analysis for human brain images , 2012, Front. Neuroinform..

[8]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[9]  J. Fiez,et al.  Functional heterogeneity within Broca's area during verbal working memory , 2002, Physiology & Behavior.

[10]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Timothy Edward John Behrens,et al.  Anatomical and Functional Connectivity of Cytoarchitectonic Areas within the Human Parietal Operculum , 2010, The Journal of Neuroscience.

[12]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[13]  Cedric E. Ginestet,et al.  Cognitive relevance of the community structure of the human brain functional coactivation network , 2013, Proceedings of the National Academy of Sciences.

[14]  Danilo Bzdok,et al.  The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data , 2011, BMC Research Notes.

[15]  Simon B Eickhoff,et al.  Investigating the Functional Heterogeneity of the Default Mode Network Using Coordinate-Based Meta-Analytic Modeling , 2009, The Journal of Neuroscience.

[16]  L. Parsons,et al.  Beyond the single study: function/location metanalysis in cognitive neuroimaging , 1998, Current Opinion in Neurobiology.

[17]  R. Dolmetsch,et al.  Generating human neurons in vitro and using them to understand neuropsychiatric disease. , 2014, Annual review of neuroscience.

[18]  Angela R. Laird,et al.  Is There “One” DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation , 2012, Cerebral cortex.

[19]  Gabriele Lohmann,et al.  Learning partially directed functional networks from meta-analysis imaging data , 2010, NeuroImage.

[20]  J. Decety,et al.  The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[21]  James Butcher,et al.  Alzheimer's researchers open the doors to data sharing , 2007, The Lancet Neurology.

[22]  Karl J. Friston,et al.  Functional ontologies for cognition: The systematic definition of structure and function , 2005, Cognitive neuropsychology.

[23]  Angela R Laird,et al.  A meta‐analytic study of changes in brain activation in depression , 2008, Human brain mapping.

[24]  Karl J. Friston,et al.  Tractography-based priors for dynamic causal models , 2009, NeuroImage.

[25]  M. Minzenberg,et al.  Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. , 2009, Archives of general psychiatry.

[26]  Angela R. Laird,et al.  Thalamic medial dorsal nucleus atrophy in medial temporal lobe epilepsy: A VBM meta-analysis☆ , 2012, NeuroImage: Clinical.

[27]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  J L Lancaster,et al.  Functional volumes modeling: Scaling for group size in averaged images , 1999, Human brain mapping.

[29]  Sabina M. Gonzales,et al.  Prefrontal activation deficits during episodic memory in schizophrenia. , 2009, The American journal of psychiatry.

[30]  Angela R. Laird,et al.  Consistent Neurodegeneration and Its Association with Clinical Progression in Huntington's Disease: A Coordinate-Based Meta-Analysis , 2012, Neurodegenerative Diseases.

[31]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[32]  Jessica A. Turner,et al.  The Cognitive Paradigm Ontology: Design and Application , 2011, Neuroinformatics.

[33]  M. Mintun,et al.  Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[34]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[35]  P. Fox,et al.  Parcellation of the cingulate cortex at rest and during tasks: a meta-analytic clustering and experimental study , 2013, Front. Hum. Neurosci..

[36]  K. Zilles,et al.  Differentiated parietal connectivity of frontal regions for “what” and “where” memory , 2012, Brain Structure and Function.

[37]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[38]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Marina Chicurel,et al.  Databasing the brain , 2000, Nature.

[40]  Angela R Laird,et al.  Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling , 2009, Structural equation modeling : a multidisciplinary journal.

[41]  Keith A. Young,et al.  The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral filtering , 2012, NeuroImage.

[42]  Angela R. Laird,et al.  Activation likelihood estimation meta-analysis revisited , 2012, NeuroImage.

[43]  R. Nathan Spreng,et al.  The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis , 2009, Journal of Cognitive Neuroscience.

[44]  Angela R. Laird,et al.  Electrophysiological and functional connectivity of the human supplementary motor area , 2012, NeuroImage.

[45]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[46]  Angela M. Uecker,et al.  ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts , 2005, Human brain mapping.

[47]  P T Fox,et al.  A Highly Accurate Method of Localizing Regions of Neuronal Activation in the Human Brain with Positron Emission Tomography , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  M. Posner,et al.  Localization of cognitive operations in the human brain. , 1988, Science.

[49]  P. Fox,et al.  Spatial normalization origins: Objectives, applications, and alternatives , 1995 .

[50]  Simon B Eickhoff,et al.  Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses , 2012, Human brain mapping.

[51]  A. Dagher,et al.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. , 2006, Cerebral cortex.

[52]  Angela R. Laird,et al.  Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform , 2010, NeuroImage.

[53]  E. Bullmore,et al.  Imaging structural co-variance between human brain regions , 2013, Nature Reviews Neuroscience.

[54]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.

[55]  B Bioulac,et al.  Evolution of brain gray matter loss in Huntington's disease: a meta‐analysis , 2013, European journal of neurology.

[56]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[57]  P. Fox,et al.  Segregation of the human medial prefrontal cortex in social cognition , 2013, Front. Hum. Neurosci..

[58]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[59]  Jessica A. Turner,et al.  Behavioral Interpretations of Intrinsic Connectivity Networks , 2011, Journal of Cognitive Neuroscience.

[60]  Angela R. Laird,et al.  Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44 , 2013, NeuroImage.

[61]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[62]  R. Ingham,et al.  Stuttered and fluent speech production: An ALE meta‐analysis of functional neuroimaging studies , 2005, Human brain mapping.

[63]  F. Craik,et al.  Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[65]  G. Lohmann,et al.  Model‐based clustering of meta‐analytic functional imaging data , 2008, Human brain mapping.

[66]  D. Glahn,et al.  Beyond hypofrontality: A quantitative meta‐analysis of functional neuroimaging studies of working memory in schizophrenia , 2005, Human brain mapping.

[67]  G. Lohmann,et al.  Using replicator dynamics for analyzing fMRI data of the human brain , 2002, IEEE Transactions on Medical Imaging.

[68]  J L Lancaster,et al.  Neuroscience on the net. , 1994, Science.

[69]  M. Mintun,et al.  Enhanced Detection of Focal Brain Responses Using Intersubject Averaging and Change-Distribution Analysis of Subtracted PET Images , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[70]  E. Bullmore,et al.  Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited , 2008, Neuroscience & Biobehavioral Reviews.

[71]  D. V. von Cramon,et al.  The meta-analysis of functional imaging data using replicator dynamics , 2005 .

[72]  J L Lancaster,et al.  Functional volumes modeling: Theory and preliminary assessment , 1997, Human brain mapping.

[73]  Peter Kochunov,et al.  A Multimodal Assessment of the Genetic Control over Working Memory , 2010, The Journal of Neuroscience.

[74]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[75]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[76]  Hong Qian,et al.  Statistics and Related Topics in Single-Molecule Biophysics. , 2014, Annual review of statistics and its application.

[77]  E. Marder,et al.  Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. , 2014, Annual review of neuroscience.

[78]  Jan Derrfuss,et al.  Lost in localization: The need for a universal coordinate database , 2009, NeuroImage.

[79]  L. Simpson Report on Certain Enteric Fever Inoculation Statistics , 1904, British medical journal.

[80]  P. Fox,et al.  Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala , 2009, Human brain mapping.

[81]  T. Paus,et al.  Functional coactivation map of the human brain. , 2008, Cerebral cortex.

[82]  E. Bullmore,et al.  Meta-analysis of diffusion tensor imaging studies in schizophrenia , 2009, Schizophrenia Research.

[83]  Angela R. Laird,et al.  Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation , 2011, NeuroImage.

[84]  Katiuscia Sacco,et al.  Functional Connectivity and Coactivation of the Nucleus Accumbens: A Combined Functional Connectivity and Structure-Based Meta-analysis , 2011, Journal of Cognitive Neuroscience.

[85]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[86]  A. David,et al.  Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies , 2008, Brain Research Reviews.

[87]  Angela R Laird,et al.  Coordinate‐based voxel‐wise meta‐analysis: Dividends of spatial normalization. Report of a virtual workshop , 2005, Human brain mapping.

[88]  L. Parsons,et al.  Location-Probability Profiles for the Mouth Region of Human Primary Motor–Sensory Cortex: Model and Validation , 2001, NeuroImage.

[89]  K. Zilles,et al.  An investigation of the structural, connectional, and functional subspecialization in the human amygdala , 2012, Human brain mapping.

[90]  Angela R. Laird,et al.  Modeling motor connectivity using TMS/PET and structural equation modeling , 2008, NeuroImage.

[91]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[92]  E. Bullmore,et al.  The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. , 2008, The American journal of psychiatry.

[93]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[94]  Angela R Laird,et al.  Brainmap taxonomy of experimental design: Description and evaluation , 2005, Human brain mapping.

[95]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[96]  Angela R. Laird,et al.  BrainMap , 2007, Neuroinformatics.

[97]  T. Paus,et al.  Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis , 2000, Experimental Brain Research.

[98]  Karl J. Friston,et al.  Distributed processing; distributed functions? , 2012, NeuroImage.

[99]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[100]  P T Fox,et al.  The growth of human brain mapping , 1997, Human brain mapping.

[101]  Angela R Laird,et al.  Automated analysis of meta‐analysis networks , 2005, Human brain mapping.

[102]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[103]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[104]  Margot J. Taylor,et al.  Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta‐analysis , 2012, Autism research : official journal of the International Society for Autism Research.

[105]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[106]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[107]  Karl J. Friston,et al.  Willed action and the prefrontal cortex in man: a study with PET , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[108]  K. Luan Phan,et al.  Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging , 2003, NeuroImage.

[109]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[110]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[111]  E. Hillman Coupling mechanism and significance of the BOLD signal: a status report. , 2014, Annual review of neuroscience.

[112]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[113]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.