Hierarchical, parallel, and serial arrangements of sensory cortical areas: connection patterns and functional aspects

Recent studies have led to a better understanding of the organization and connections of somatosensory and visual cortex in a number of mammalian species. Lesion studies have provided information on the significance of particular connections. The variable effectiveness of cortical lesions in deactivating target areas suggests that serial processing may be emphasized in higher primates.

[1]  S. Molotchnikoff,et al.  Susceptibility of neurons in area 18a to blockade of area 17 in rats , 1990, Brain Research.

[2]  J. Kaas,et al.  Parallel thalamic activation of the first and second somatosensory areas in prosimian primates and tree shrews , 1991, The Journal of comparative neurology.

[3]  B. Whitsel,et al.  A combined 2‐deoxyglucose and neurophysiological study of primate somatosensory cortex , 1987, The Journal of comparative neurology.

[4]  David P. Friedman,et al.  Physiological evidence for serial processing in somatosensory cortex. , 1987, Science.

[5]  H. Gould,et al.  Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys , 1990, The Journal of comparative neurology.

[6]  J. Kaas,et al.  Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: a double-labeling study with radiolabeled wheatgerm agglutinin and wheatgerm agglutinin conjugated to horseradish peroxidase. , 1985, Somatosensory research.

[7]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[8]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J. Kaas,et al.  Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys , 1985, The Journal of comparative neurology.

[10]  J. Kaas,et al.  Cortical connections of areas 17 (V‐I) and 18 (V‐II) of squirrels , 1989, The Journal of comparative neurology.

[11]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.

[12]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  L Krubitzer,et al.  Convergence of processing channels in the extrastriate cortex of monkeys , 1990, Visual Neuroscience.

[14]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[15]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[16]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[17]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  L. Krubitzer,et al.  Thalamic connections of three representations of the body surface in somatosensory cortex of gray squirrels , 1987, The Journal of comparative neurology.

[20]  K. Sathian,et al.  Altered responses to cutaneous stimuli in the second somatosensory cortex following lesions of the postcentral gyrus in infant and juvenile macaques , 1990, The Journal of comparative neurology.

[21]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[22]  W. Willis Ascending Somatosensory Systems , 1986 .

[23]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[24]  J. K. Harting,et al.  Ascending pathways from the monkey superior colliculus: An autoradiographic analysis , 1980, The Journal of comparative neurology.

[25]  D. Ferster X- and Y-mediated current sources in areas 17 and 18 of cat visual cortex , 1990, Visual Neuroscience.

[26]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[27]  J. H. Kaas,et al.  Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1 , 1990, Brain Research.

[28]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[29]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[30]  C. Darian‐Smith,et al.  Thalamic projections to sensorimotor cortex in the macaque monkey: Use of multiple retrograde fluorescent tracers , 1990, The Journal of comparative neurology.

[31]  David P. Friedman,et al.  Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque , 1986, The Journal of comparative neurology.

[32]  J. Kaas,et al.  Ablations of areas 3b (SI proper) and 3a of somatosensory cortex in marmosets deactivate the second and parietal ventral somatosensory areas. , 1990, Somatosensory & motor research.