Cognition and intractability: a guide to classical and parameterized complexity analysis

Intractability is a growing concern across the cognitive sciences: while many models of cognition can describe and predict human behavior in the lab, it remains unclear how these models can scale to situations of real-world complexity. Cognition and Intractability is the first book to provide an accessible introduction to computational complexity analysis and its application to questions of intractability in cognitive science. Covering both classical and parameterized complexity analysis, it introduces the mathematical concepts and proof techniques that can be used to test one's intuition of (in)tractability. It also describes how these tools can be applied to cognitive modeling to deal with intractability, and its ramifications, in a systematic way. Aimed at students and researchers in philosophy, cognitive neuroscience, psychology, artificial intelligence, and linguistics who want to build a firm understanding of intractability and its implications in their modeling work, it is an ideal resource for teaching or self-study.

[1]  Johan Kwisthout,et al.  Computational Resource Demands of a Predictive Bayesian Brain , 2019, Computational Brain & Behavior.

[2]  Ronald de Haan Parameterized Complexity in the Polynomial Hierarchy - Extending Parameterized Complexity Theory to Higher Levels of the Hierarchy , 2019, Lecture Notes in Computer Science.

[3]  Richard P. Cooper,et al.  On the Relation Between Marr's Levels: A Response to Blokpoel (2017) , 2018, Top. Cogn. Sci..

[4]  Iris van Rooij,et al.  Parameterized Complexity of Theory of Mind Reasoning in Dynamic Epistemic Logic , 2018, Journal of Logic, Language and Information.

[5]  Social categorization in connectionist models: A conceptual integration , 2018 .

[6]  Maria Otworowska,et al.  Demons of Ecological Rationality , 2018, Cogn. Sci..

[7]  Johan Kwisthout,et al.  Approximate inference in Bayesian networks: Parameterized complexity results , 2018, Int. J. Approx. Reason..

[8]  Todd Wareham The Roles of Internal Representation and Processing in Problem Solving Involving Insight: A Computational Complexity Perspective , 2017, J. Probl. Solving.

[9]  Doreen Meier,et al.  Neural Network Design And The Complexity Of Learning , 2016 .

[10]  M. S. Sweers Adapting the Adaptive Toolbox: The computational cost of building rational behavior , 2015 .

[11]  François Schwarzentruber,et al.  Complexity Results in Epistemic Planning , 2015, IJCAI.

[12]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[13]  Iris van Rooij,et al.  How the curse of intractability can be cognitive science's blessing , 2015, CogSci.

[14]  Johan Kwisthout,et al.  Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks , 2015, J. Artif. Intell. Res..

[15]  Johan Kwisthout,et al.  Rational analysis, intractability, and the prospects of ‘as if’-explanations , 2014, Synthese.

[16]  Michael Öllinger,et al.  The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem , 2013, Psychological Research.

[17]  Jan van Eijck,et al.  Epistemic Probability Logic Simplified , 2014, Advances in Modal Logic.

[18]  Stefan Szeider,et al.  Parameterized Complexity Results for Exact Bayesian Network Structure Learning , 2014, J. Artif. Intell. Res..

[19]  R. Downey,et al.  Fundamentals of Parameterized Complexity , 2013, Texts in Computer Science.

[20]  Johan Kwisthout,et al.  Bridging the gap between theory and practice of approximate Bayesian inference , 2013, Cognitive Systems Research.

[21]  Tijl Grootswagers Having your cake and eating it too: Towards a Fast and Optimal Method for Analogy Derivation , 2013 .

[22]  Johan Kwisthout,et al.  Structure Approximation of Most Probable Explanations in Bayesian Networks , 2013, ECSQARU.

[23]  Johan Kwisthout,et al.  A computational-level explanation of the speed of goal inference , 2013 .

[24]  François Schwarzentruber,et al.  On the Complexity of Dynamic Epistemic Logic , 2013, TARK.

[25]  Tarek Richard Besold,et al.  Complex Analogies: Remarks on the Complexity of HDTP , 2012, Australasian Conference on Artificial Intelligence.

[26]  Johan Kwisthout,et al.  Relevancy in Problem Solving: A Computational Framework , 2012, J. Probl. Solving.

[27]  Iris van Rooij,et al.  Intractability and approximation of optimization theories of cognition , 2012 .

[28]  Stefan Rümmele,et al.  The Parameterized Complexity of Abduction , 2012, AAAI.

[29]  P. Todd,et al.  Ecological Rationality: Intelligence in the World , 2012 .

[30]  Paul Thagard,et al.  COHERENCE: THE PRICE IS RIGHT , 2012 .

[31]  Iris van Rooij Self-Organization Takes Time Too , 2012, Top. Cogn. Sci..

[32]  Moritz Müller,et al.  Parameterized Random Complexity , 2013, Theory of Computing Systems.

[33]  David J. Chalmers,et al.  A Computational Foundation for the Study of Cognition , 2011 .

[34]  Johan Kwisthout,et al.  Most probable explanations in Bayesian networks: Complexity and tractability , 2011, Int. J. Approx. Reason..

[35]  Iris van Rooij,et al.  Minesweeper May Not Be NP-Complete but Is Hard Nonetheless , 2011 .

[36]  Johan Kwisthout,et al.  Ignorance is bliss: A complexity perspective on adapting reactive architectures , 2011, 2011 IEEE International Conference on Development and Learning (ICDL).

[37]  Iris van Rooij,et al.  On the computational challenges of analogy-based generalization , 2011, Cognitive Systems Research.

[38]  Johan Kwisthout,et al.  Bayesian Intractability Is Not an Ailment That Approximation Can Cure , 2011, Cogn. Sci..

[39]  Kenneth D. Forbus,et al.  Computational models of analogy. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[40]  Todd Wareham,et al.  What Does (and Doesn’t) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective , 2011, J. Probl. Solving.

[41]  Johan Kwisthout,et al.  The Complexity of Finding kth Most Probable Explanations in Probabilistic Networks , 2011, SOFSEM.

[42]  Johan Kwisthout,et al.  The computational costs of recipient design and intention recognition in communication , 2011, CogSci.

[43]  Paul Thagard,et al.  Changing Minds About Climate Change: Belief Revision, Coherence, and Emotion , 2011, Belief Revision meets Philosophy of Science.

[44]  Iris van Rooij,et al.  Intractability and the use of heuristics in psychological explanations , 2012, Synthese.

[45]  Adam N Sanborn,et al.  Rational approximations to rational models: alternative algorithms for category learning. , 2010, Psychological review.

[46]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[47]  Chris L. Baker,et al.  Action understanding as inverse planning , 2009, Cognition.

[48]  Kenneth D. Forbus,et al.  Reviving Inert Knowledge: Analogical Abstraction Supports Relational Retrieval of Past Events , 2009, Cogn. Sci..

[49]  J. Kwisthout,et al.  The Computational Complexity of Probabilistic Networks , 2009 .

[50]  Angela Schwering,et al.  Syntactic principles of heuristic-driven theory projection , 2009, Cognitive Systems Research.

[51]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[52]  I. Rooij,et al.  Connectionist semantic systematicity , 2009, Cognition.

[53]  H. Wareham,et al.  Similarity as tractable transformation , 2009 .

[54]  James L. McClelland The Place of Modeling in Cognitive Science , 2009, Top. Cogn. Sci..

[55]  Gustav Nordh,et al.  What makes propositional abduction tractable , 2008, Artif. Intell..

[56]  Iris van Rooij,et al.  Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities , 2008, Comput. J..

[57]  Gerd Gigerenzer,et al.  Why Heuristics Work , 2008, Perspectives on psychological science : a journal of the Association for Psychological Science.

[58]  Rolf Niedermeier,et al.  Techniques for Practical Fixed-Parameter Algorithms , 2007, Comput. J..

[59]  Iris van Rooij,et al.  A lazy brain? Embodied embedded cognition and cognitive neuroscience , 2008 .

[60]  I. V. van Rooij,et al.  The tractable cognition thesis. , 2008, Cognitive science.

[61]  Jan Arne Telle,et al.  An Overview of Techniques for Designing Parameterized Algorithms , 2008, Comput. J..

[62]  Julian N. Marewski,et al.  Fast and Frugal Heuristics Are Plausible Models of Cognition: Reply To , 2022 .

[63]  Patricia A. Evans,et al.  Identifying Sources of Intractability in Cognitive Models: An Illustration Using Analogical Structure Mapping , 2008 .

[64]  Book Reviews , 2007 .

[65]  W. Paul Cockshott,et al.  Are There New Models of Computation? Reply to Wegner and Eberbach , 2007, Comput. J..

[66]  I.J.E.I. van Rooij Book review: Hot thought: Mechanisms and applications of emotional coherence [P. Thagard, 2006] , 2007 .

[67]  Douglas Vickers,et al.  Human Performance on Visually Presented Traveling Salesperson Problems with Varying Numbers of Nodes , 2006, J. Probl. Solving.

[68]  Yll Haxhimusa,et al.  Traveling Salesman Problem: A Foveating Pyramid Model , 2006, J. Probl. Solving.

[69]  Michael Schmitt,et al.  On the Complexity of Learning Lexicographic Strategies , 2006, J. Mach. Learn. Res..

[70]  P. Thagard,et al.  Hot Thought: Mechanisms and Applications of Emotional Cognition , 2006 .

[71]  J. Tenenbaum,et al.  Special issue on “Probabilistic models of cognition , 2022 .

[72]  Steven Weinstein,et al.  Is the Brain a Quantum Computer? , 2006, Cogn. Sci..

[73]  Kenneth D. Forbus,et al.  Companion Cognitive Systems: A Step towards Human-Level AI , 2004, AI Mag..

[74]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[75]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[76]  Kenneth D. Forbus,et al.  Making SME greedy and pragmatic , 2006 .

[77]  Michael Wooldridge,et al.  The complexity of agent design problems: Determinism and history dependence , 2005, Annals of Mathematics and Artificial Intelligence.

[78]  Iris van Rooij,et al.  Sources of complexity in subset choice , 2005 .

[79]  S. Stich,et al.  The Innate Mind: Structure and Contents , 2005 .

[80]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..

[81]  Marcello Frixione,et al.  Tractable Competence , 2001, Minds and Machines.

[82]  Nick Chater,et al.  The Rational Analysis Of Mind And Behavior , 2000, Synthese.

[83]  Michael Schmitt,et al.  Simplicity and Robustness of Fast and Frugal Heuristics , 1999, Minds and Machines.

[84]  G. Vigliocco,et al.  Language in mind , 2004 .

[85]  Pekka Orponen,et al.  General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results , 2003, Neural Computation.

[86]  Rolf Niedermeier,et al.  On efficient fixed-parameter algorithms for weighted vertex cover , 2003, J. Algorithms.

[87]  N. Chater,et al.  Similarity as transformation , 2003, Cognition.

[88]  P. Thagard Why wasn't O.J. convicted? Emotional coherence in legal inference , 2003, Cognition & emotion.

[89]  Dedre Gentner,et al.  Why we’re so smart , 2003 .

[90]  Michael Wooldridge,et al.  Complexity Results for Agent Design Problems , 2003 .

[91]  Nick Chater,et al.  Fast, frugal, and rational: How rational norms explain behavior , 2003 .

[92]  Linda C. van der Gaag,et al.  On the Complexity of the MPA Problem in Probabilistic Networks , 2002, ECAI.

[93]  U. Hoffrage,et al.  Fast, frugal, and fit: Simple heuristics for paired comparison , 2002 .

[94]  Dan Sperber,et al.  Pragmatics, modularity and mindreading , 2002 .

[95]  John K. Tsotsos,et al.  Complexity, Vision, and Attention , 2001 .

[96]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[97]  P. Thagard,et al.  Coherence in Thought and Action , 2000 .

[98]  P M Todd,et al.  Précis of Simple heuristics that make us smart , 2000, Behavioral and Brain Sciences.

[99]  Subhash C. Kak,et al.  Active agents, intelligence and quantum computing , 2000, Inf. Sci..

[100]  Todd Wareham,et al.  The Parameterized Complexity of Intersection and Composition Operations on Sets of Finite-State Automata , 2000, CIAA.

[101]  Lance Fortnow,et al.  One complexity theorist's view of quantum computing , 2000, CATS.

[102]  R. Kaye Minesweeper is NP-complete , 2000 .

[103]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[104]  E. Millgram Coherence: The Price of the Ticket , 2000 .

[105]  D. Gentner,et al.  Structure mapping in the comparison process. , 2000, The American journal of psychology.

[106]  Ajit Narayanan,et al.  Quantum computing for beginners , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[107]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[108]  R. Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[109]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[110]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[111]  Michael R. Fellows,et al.  Systematic parameterized complexity analysis in computational phonology , 1999 .

[112]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[113]  M. Fellows,et al.  An improved fixed parameter tractable algorithm for vertex cover , 1999 .

[114]  Paul Thagard,et al.  Coherence as Constraint Satisfaction , 2019, Cogn. Sci..

[115]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[116]  T. Gelder,et al.  The dynamical hypothesis in cognitive science , 1998, Behavioral and Brain Sciences.

[117]  Ashraf M. Abdelbar,et al.  Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..

[118]  Sanjeev Arora,et al.  The approximability of NP-hard problems , 1998, STOC '98.

[119]  Nick Chater,et al.  Rationality In An Uncertain World: Essays In The Cognitive Science Of Human Understanding , 1998 .

[120]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[121]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[122]  Michael Prasse,et al.  Why Church's Thesis Still Holds. Some Notes on Peter Wegner's Tracts on Interaction and Computability , 1998, Comput. J..

[123]  Tony Veale,et al.  The Competence of Sub-Optimal Theories of STructure Mapping on Hard Analogies , 1997, IJCAI.

[124]  Willem F. G. Haselager,et al.  Cognitive Science and Folk Psychology: The Right Frame of Mind , 1997 .

[125]  Jason Eisner,et al.  Eecient Generation in Primitive Optimality Theory , 1997 .

[126]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[127]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[128]  Herbert S. Wilf,et al.  Algorithms and Complexity , 1994, Lecture Notes in Computer Science.

[129]  Kenneth D. Forbus,et al.  Towards a Computational Model of Evaluating and Using Analogical Inferences , 1997 .

[130]  Ian Parberry,et al.  Knowledge, Understanding, and Computational Complexity , 1997 .

[131]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[132]  Rick Grush,et al.  GAPS IN PENROSE ' S TOILINGS , 1997 .

[133]  Jirí Síma,et al.  Back-propagation is not Efficient , 1996, Neural Networks.

[134]  Peter C. Fishburn,et al.  Binary interactions and subset choice , 1996 .

[135]  T. Horgan,et al.  Connectionism and the Philosophy of Psychology , 1996 .

[136]  Zongben Xu,et al.  Asymmetric Hopfield-type networks: Theory and applications , 1996, Neural Networks.

[137]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[138]  Marco Cesati,et al.  Parameterized complexity analysis in robot motion planning , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[139]  T. Gelder,et al.  Mind as Motion: Explorations in the Dynamics of Cognition , 1995 .

[140]  T. Gelder,et al.  What Might Cognition Be, If Not Computation? , 1995 .

[141]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[142]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[143]  Rick Grush,et al.  Gaps in Penrose's toiling , 1995 .

[144]  Daniel C. Dennett,et al.  Cognitive science as reverse engineering several meanings of “Top-down” and “Bottom-up” , 1995 .

[145]  Roger Penrose,et al.  Shadows of the mind - a search for the missing science of consciousness , 1994 .

[146]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[147]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[148]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[149]  L. Cosmides,et al.  Mapping the mind: Origins of domain specificity: The evolution of functional organization , 1994 .

[150]  Ian Parberry,et al.  Circuit complexity and neural networks , 1994 .

[151]  Linda B. Smith,et al.  A Dynamic systems approach to the development of cognition and action , 1994 .

[152]  Peter C. Fishburn,et al.  Subset preferences in linear and nonlinear utility theory , 1993 .

[153]  Paul Thagard,et al.  Computational Tractability and Conceptual Coherence: Why Do Computer Scientists Believe that P≠NP? , 1993, Canadian Journal of Philosophy.

[154]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[155]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[156]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[157]  Eric Sven Ristad The language complexity game , 1993 .

[158]  Bon K. Sy,et al.  Reasoning MPE to Multiply Connected Belief Networks Using Message Passing , 1992, AAAI.

[159]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[160]  Xin Yao,et al.  Finding Approximate Solutions to NP-Hard Problems by Neural Networks is Hard , 1992, Inf. Process. Lett..

[161]  P. Kube Unbounded visual search is not both biologically plausible and NP - Complete , 1991, Behavioral and Brain Sciences.

[162]  Dean Allemang,et al.  The Computational Complexity of Abduction , 1991, Artif. Intell..

[163]  L. Foulds,et al.  Graph Theory Applications , 1991 .

[164]  Eric Sven Ristad,et al.  Computational structure of human language , 1990 .

[165]  Lester E. Krueger,et al.  Analyzing vision at the complexity level: Misplaced complexity? , 1990, Behavioral and Brain Sciences.

[166]  Ralph M. Siegel,et al.  Is it really that complex? After all, there are no green elephants , 1990, Behavioral and Brain Sciences.

[167]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[168]  Uwe Schöning,et al.  Complexity Cores and Hard Problem Instances , 1990, SIGAL International Symposium on Algorithms.

[169]  Hector J. Levesque,et al.  Abductive and Default Reasoning: A Computational Core , 1990, AAAI.

[170]  John R. Anderson The Adaptive Character of Thought , 1990 .

[171]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[172]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[173]  H. Simon,et al.  Invariants of human behavior. , 1990, Annual review of psychology.

[174]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[175]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[176]  John K. Tsotsos The Complexity of Perceptual Search Tasks , 1989, IJCAI.

[177]  D. Over,et al.  Studies in the Way of Words , 1989 .

[178]  Michael R. Fellows,et al.  On the Complexity of Fixed Parameter Problems (Extended Abstract) , 1989, FOCS 1989.

[179]  Allen Newell,et al.  GPS, a program that simulates human thought , 1995 .

[180]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[181]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[182]  J. Stephen Judd,et al.  On the complexity of loading shallow neural networks , 1988, J. Complex..

[183]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[184]  Ronald J. Gould,et al.  Graph theory , 1988 .

[185]  Allen Newell,et al.  THE THEORY OF HUMAN PROBLEM SOLVING , 1988 .

[186]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[187]  Joseph W. Goodman,et al.  On the power of neural networks for solving hard problems , 1990, J. Complex..

[188]  J. Fodor,et al.  Psychosemantics: The Problem of Meaning in the Philosophy of Mind , 1988 .

[189]  John R. Anderson Methodologies for studying human knowledge , 1987, Behavioral and Brain Sciences.

[190]  Robert C. Berwick,et al.  Computational complexity and natural language , 1987 .

[191]  D. Sperber,et al.  Relevance: Communication and Cognition , 1989 .

[192]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[193]  J. Reif Complexity of the Generalized Mover's Problem. , 1985 .

[194]  Gregory F. Cooper,et al.  NESTOR: A Computer-Based Medical Diagnostic Aid That Integrates Causal and Probabilistic Knowledge. , 1984 .

[195]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[196]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[197]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.

[198]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theor. Comput. Sci..

[199]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[200]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[201]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[202]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[203]  D. Marr,et al.  Artificial Intelligence - A Personal View , 1976, Artif. Intell..

[204]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[205]  D. E. Knuth,et al.  A terminological proposal , 1974, SIGA.

[206]  E. Rosch ON THE INTERNAL STRUCTURE OF PERCEPTUAL AND SEMANTIC CATEGORIES1 , 1973 .

[207]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[208]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[209]  Stephen A. Cook,et al.  Review: Alan Cobham, Yehoshua Bar-Hillel, The Intrinsic Computational Difficulty of Functions , 1969 .

[210]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[211]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[212]  A NEWELL,et al.  Computer simulation of human thinking. , 1961, Science.

[213]  R. Prim Shortest connection networks and some generalizations , 1957 .

[214]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[215]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[216]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[217]  S. Kleene General recursive functions of natural numbers , 1936 .

[218]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[219]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .