Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.

[1]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[2]  Don P. Mitchell,et al.  Spectrally optimal sampling for distribution ray tracing , 1991, SIGGRAPH.

[3]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[4]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[5]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[6]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[7]  Harvard Medical School,et al.  Effect of nonstationarities on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Delphine Pins,et al.  The neural correlates of conscious vision. , 2003, Cerebral cortex.

[9]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[10]  Michael Rudolph,et al.  A Fast-Conducting, Stochastic Integrative Mode for Neocortical Neurons InVivo , 2003, The Journal of Neuroscience.

[11]  T. Ergenoğlu,et al.  Alpha rhythm of the EEG modulates visual detection performance in humans. , 2004, Brain research. Cognitive brain research.

[12]  K. Linkenkaer-Hansen,et al.  Prestimulus Oscillations Enhance Psychophysical Performance in Humans , 2004, The Journal of Neuroscience.

[13]  K. Linkenkaer-Hansen,et al.  Early Neural Correlates of Conscious Somatosensory Perception , 2005, The Journal of Neuroscience.

[14]  W. Klimesch,et al.  Visual discrimination performance is related to decreased alpha amplitude but increased phase locking , 2005, Neuroscience Letters.

[15]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[16]  V. Roychowdhury,et al.  Assessment of long-range correlation in time series: how to avoid pitfalls. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  R. Jayanth,et al.  たんぱく質の幾何:水素結合,立体構造および周辺コンパクトチューブ , 2006 .

[18]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[19]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[20]  Simon Hanslmayr,et al.  The best of both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP generation. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[21]  W. Klimesch,et al.  Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion , 2007, Neuroscience.

[22]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[23]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[24]  C. Koch,et al.  The Neural Correlates of Consciousness , 2008, Annals of the New York Academy of Sciences.

[25]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[26]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[27]  C. Tallon-Baudry,et al.  How Ongoing Fluctuations in Human Visual Cortex Predict Perceptual Awareness: Baseline Shift versus Decision Bias , 2009, The Journal of Neuroscience.

[28]  Diane M. Beck,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[29]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[30]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[31]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[32]  Caspar M. Schwiedrzik,et al.  Expectations Change the Signatures and Timing of Electrophysiological Correlates of Perceptual Awareness , 2011, The Journal of Neuroscience.

[33]  James S. P. Macdonald,et al.  Trial-by-Trial Variations in Subjective Attentional State are Reflected in Ongoing Prestimulus EEG Alpha Oscillations , 2011, Front. Psychology.

[34]  Woodrow L. Shew,et al.  Predicting criticality and dynamic range in complex networks: effects of topology. , 2010, Physical review letters.

[35]  A. E. Eiben,et al.  Multi-Problem Parameter Tuning using BONESA , 2011 .

[36]  Ole Jensen,et al.  Alpha Oscillations Correlate with the Successful Inhibition of Unattended Stimuli , 2011, Journal of Cognitive Neuroscience.

[37]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[38]  C. Everitt,et al.  Gravity Probe B:一般相対論をテストする宇宙実験の最終結果 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2011 .

[39]  Vadim V. Nikulin,et al.  Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations , 2012, Front. Physio..

[40]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[41]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[42]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[43]  W. Singer,et al.  Neuroscience and Biobehavioral Reviews Distilling the Neural Correlates of Consciousness , 2022 .

[44]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[45]  Peter J Hellyer,et al.  The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention , 2014, The Journal of Neuroscience.

[46]  N. Logothetis,et al.  Is the frontal lobe involved in conscious perception? , 2014, Front. Psychol..

[47]  J. Schoffelen,et al.  Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. , 2014, Cerebral cortex.

[48]  Jonathan Smallwood,et al.  The Decoupled Mind: Mind-wandering Disrupts Cortical Phase-locking to Perceptual Events , 2014, Journal of Cognitive Neuroscience.

[49]  Nergis Tomen,et al.  Marginally subcritical dynamics explain enhanced stimulus discriminability under attention , 2014, Front. Syst. Neurosci..

[50]  Biyu J He,et al.  Spatiotemporal Dissociation of Brain Activity Underlying Subjective Awareness, Objective Performance and Confidence , 2014, The Journal of Neuroscience.

[51]  Romain Brette,et al.  Equation-oriented specification of neural models for simulations , 2013, Front. Neuroinform..

[52]  Woodrow L. Shew,et al.  State-dependent intrinsic predictability of cortical network dynamics , 2015, PLoS Comput. Biol..

[53]  Juan R. Vidal,et al.  Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex , 2015, Front. Psychol..

[54]  Thilo Womelsdorf,et al.  A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior , 2016, Front. Syst. Neurosci..

[55]  Caspar M. Schwiedrzik,et al.  Expecting to See a Letter: Alpha Oscillations as Carriers of Top-Down Sensory Predictions. , 2016, Cerebral cortex.

[56]  R. VanRullen Perceptual Cycles , 2016, Trends in Cognitive Sciences.

[57]  Jochen Triesch,et al.  Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network , 2017, PloS one.

[58]  Guido Nolte,et al.  Catecholamines alter the intrinsic variability of cortical population activity and perception , 2017, bioRxiv.

[59]  K. Linkenkaer-Hansen,et al.  Strong long‐range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance , 2017, The European journal of neuroscience.

[60]  M. Copelli,et al.  Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results , 2018, bioRxiv.

[61]  M. Wibral,et al.  Control of criticality and computation in spiking neuromorphic networks with plasticity , 2019, Nature Communications.

[62]  Johannes Zierenberg,et al.  Tailored ensembles of neural networks optimize sensitivity to stimulus statistics , 2019, Physical Review Research.