A Reversible Crystallinity-Preserving Phase Transition in Metal-Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications.

A quenching-triggered reversible single-crystal-to-single-crystal (SC-SC) phase transition was discovered in a metal-organic framework (MOF) PCN-526. During the phase transition, the one-dimensional channel of PCN-526 distorts from square to rectangular in shape while maintaining single crystallinity. Although SC-SC transformations have been frequently observed in MOFs, most reports have focused on describing the resulting structural alterations without shedding light on the mechanism for the transformation. Interestingly, modifying the occupancy or species of metal ions in the extra-framework sites, which provides mechanistic insight into the causes for the transformation, can forbid this phase transition. Moreover, as a host scaffold, PCN-526 presents a platform for modulation of the photoluminescence properties by encapsulation of luminescent guest molecules. Through judicious choice of these guest molecules, responsive luminescence caused by SC-SC transformations can be detected, introducing a new strategy for the design of novel luminescent MOF materials.

[1]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[2]  X. You,et al.  A robust microporous metal–organic framework constructed from a flexible organic linker for acetylene storage at ambient temperature , 2012 .

[3]  Wenbin Lin,et al.  Highly porous and robust 4,8-connected metal-organic frameworks for hydrogen storage. , 2009, Journal of the American Chemical Society.

[4]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[5]  Regine Herbst-Irmer,et al.  Crystal Structure Refinement , 2006 .

[6]  Pierre Papon,et al.  The physics of phase transitions : concepts and applications , 2002 .

[7]  Q. Meng,et al.  A novel 3D (4, 8)-connected metal-organic framework of scu topology with two types of 1D channel constructed by methylenediisophthalic acid (H4MDIP) , 2010 .

[8]  M. P. Suh,et al.  A metal-organic bilayer open framework with a dynamic component: single-crystal-to-single-crystal transformations. , 2002, Journal of the American Chemical Society.

[9]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[10]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[11]  Dawei Feng,et al.  An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. , 2013, Journal of the American Chemical Society.

[12]  W. Russ Algar,et al.  Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing , 2014 .

[13]  H. Fukuoka,et al.  Reversible emergence of a self-assembled layered structure from three-dimensional isotropic ionic crystal of a cluster compound (4-HNC5H4OH)2Mo6Cl14 driven by absorption of water and alcohols. , 2008, Journal of the American Chemical Society.

[14]  A. Williamson,et al.  Anomalous photoluminescence in CdSe quantum-dot solids at high pressure due to nonuniform stress. , 2008, Small.

[15]  J. Vittal,et al.  Topochemical photodimerization in the coordination polymer [{(CF3CO2)(mu-O2CCH3)Zn}2(mu-bpe)2]n through single-crystal to single-crystal transformation. , 2005, Angewandte Chemie.

[16]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[17]  So Young Lee,et al.  Temperature-dependent 3-D CuI coordination polymers of calix[4]-bis-dithiacrown: crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal. , 2008, Journal of the American Chemical Society.

[18]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: edge-transitive binodal structures. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[19]  M. Durandurdu Formation of an anataselike phase in silica under anisotropic stress: An ab initio constant-pressure study , 2009 .

[20]  Jun Liu,et al.  Selective metal cation capture by soft anionic metal-organic frameworks via drastic single-crystal-to-single-crystal transformations. , 2012, Journal of the American Chemical Society.

[21]  Wenbin Lin,et al.  Highly porous 4,8-connected metal-organic frameworks: synthesis, characterization, and hydrogen uptake. , 2012, Inorganic chemistry.

[22]  J. Vittal,et al.  Anisotropic movements of coordination polymers upon desolvation: solid-state transformation of a linear 1D coordination polymer to a ladderlike structure. , 2006, Angewandte Chemie.

[23]  S. Kaskel,et al.  Flexible and hydrophobic Zn-based metal-organic framework. , 2011, Inorganic chemistry.

[24]  J. Janik,et al.  Neutron quasielastic scattering results for Me(NH3)6(XY4)2, Me(NH3)6(XY3)2 and Me(NH3)6X2 compounds, compared with the calorimetric and Raman line width data - a new analysis , 1991 .

[25]  Kristi S Anseth,et al.  Mechanical Properties of Cellularly Responsive Hydrogels and Their Experimental Determination , 2010, Advanced materials.

[26]  R. S. Krishnan,et al.  Thermal expansion of crystals , 1979 .

[27]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[28]  Javier Mart-Rujas,et al.  Dramatic structural rearrangements in porous coordination networks. , 2011, Journal of the American Chemical Society.

[29]  A. Fuchs,et al.  The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption , 2010, 1904.11921.

[30]  B. Liu,et al.  Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. , 2014, Journal of the American Chemical Society.

[31]  Tian-Fu Liu,et al.  Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation. , 2013, Inorganic chemistry.

[32]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[33]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[34]  W. Li,et al.  Pressure-induced bond rearrangement and reversible phase transformation in a metal-organic framework. , 2014, Angewandte Chemie.

[35]  A Paul Alivisatos,et al.  Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. , 2009, Nano letters.

[36]  Johan Hofkens,et al.  Handbook of fluorescence spectroscopy and imaging : from single molecules to ensembles , 2011 .

[37]  C. Rao Phase transitions in solids : an approach to the study of the chemistry and physics of solids / C.N.R. Rao, K.J. Rao , 1978 .

[38]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[39]  J. Lang,et al.  Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective [2+2] photodimerization reactions. , 2010, Angewandte Chemie.

[40]  Peter Müller,et al.  Crystal structure refinement : a crystallographer's guide to SHELXL , 2006 .

[41]  Jianping Ma,et al.  Encapsulation and sensitization of UV-vis and near infrared lanthanide hydrate emitters for dual- and bimodal-emissions in both air and aqueous media based on a porous heteroatom-rich Cd(II)-framework. , 2012, Inorganic chemistry.

[42]  M. Aranda,et al.  Stepwise Topotactic Transformations (1D to 3D) in Copper Carboxyphosphonate Materials: Structural Correlations , 2010 .

[43]  Zhiyong Guo,et al.  A three-dimensional microporous metal-metalloporphyrin framework. , 2015, Inorganic chemistry.

[44]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[45]  Subi J. George,et al.  MOF Nano‐Vesicles and Toroids: Self‐Assembled Porous Soft‐Hybrids for Light Harvesting , 2013 .

[46]  J. Vittal,et al.  Single-crystal to single-crystal photochemical structural transformations of interpenetrated 3 D coordination polymers by [2+2] cycloaddition reactions. , 2010, Angewandte Chemie.

[47]  F. Reynaud Order‐Disorder Transitions in Substitutional Solid Solutions , 1982 .

[48]  Ilich A. Ibarra,et al.  Molecular sensing and discrimination by a luminescent terbium-phosphine oxide coordination material. , 2013, Chemical communications.

[49]  Z. Dong,et al.  Phase transformation of a rare-earth Anderson polyoxometalate at low temperature , 2008 .

[50]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[51]  R. Artiaga,et al.  Kinetic Study of the Low Temperature Transformation of Co(HCOO)3[(CH3)2NH2] , 2012 .

[52]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[53]  A. Greentree,et al.  Splitting of photoluminescent emission from nitrogen–vacancy centers in diamond induced by ion-damage-induced stress , 2013, 1302.2539.

[54]  L. León-Reina,et al.  Multifunctional Luminescent and Proton-Conducting Lanthanide Carboxyphosphonate Open-Framework Hybrids Exhibiting Crystalline-to-Amorphous-to-Crystalline Transformations , 2012 .

[55]  A. J. Blake,et al.  High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. , 2011, Chemical communications.

[56]  M. Liszka-Skoczylas,et al.  Phase transition and molecular motions in [Cd(NH3)6](NO3)2 , 2007 .

[57]  Y. Tong,et al.  Bright blue-emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices. , 2007, Angewandte Chemie.

[58]  Wonyoung Choe,et al.  "Nanoscale lattice fence" in a metal-organic framework: interplay between hinged topology and highly anisotropic thermal response. , 2011, Journal of the American Chemical Society.

[59]  Wei‐Xiong Zhang,et al.  A robust microporous 3D cobalt(II) coordination polymer with new magnetically frustrated 2D lattices: single-crystal transformation and guest modulation of cooperative magnetic properties. , 2006, Dalton transactions.

[60]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[61]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[62]  Tapas Kumar Maji,et al.  Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation. , 2005, Journal of the American Chemical Society.

[63]  T. Bein,et al.  Exceptional ion-exchange selectivity in a flexible open framework lanthanum(III)tetrakisphosphonate. , 2009, Journal of the American Chemical Society.

[64]  F. Chen,et al.  Host-guest interaction dictated selective adsorption and fluorescence quenching of a luminescent lightweight metal-organic framework toward liquid explosives. , 2014, Dalton Transactions.

[65]  E. Gutiérrez‐Puebla,et al.  Reversible breaking and forming of metal-ligand coordination bonds: temperature-triggered single-crystal to single-crystal transformation in a metal-organic framework. , 2009, Chemistry.

[66]  Yen-Hsiang Liu,et al.  Time-evolving self-organization and autonomous structural adaptation of cobalt(II)--organic framework materials with scu and pts nets. , 2008, Chemistry.

[67]  Qichun Zhang,et al.  Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks. , 2014, Inorganic chemistry.

[68]  Yue‐Biao Zhang,et al.  Layer-by-layer evolution and a hysteretic single-crystal to single-crystal transformation cycle of a flexible pillared-layer open framework. , 2012, Chemical communications.