Cook Versus Karp-Levin: Separating Completeness Notions if NP Is not Small (Extended Abstract)

Under the hypothesis that NP does not have p-measure 0 (roughly, that NP contains more than a negligible subset of exponential time), it is shown that there is a language that is ≤ T P -complete (“Cook complete”), but not ≤ m P -complete (“Karp-Levin complete”), for NP. This conclusion, widely believed to be true, is not known to follow from P ≠ NP or other traditional complexity-theoretic hypotheses.

[1]  Alan L. Selman,et al.  P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP , 1979, ICALP.

[2]  渡邉 治 On the structure of intractable complexity classes , 1987 .

[3]  Daniel J. Moore,et al.  Completeness, Approximation and Density , 1981, SIAM J. Comput..

[4]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[5]  Osamu Watanabe,et al.  A Comparison of Polynomial Time Completeness Notions , 1987, Theor. Comput. Sci..

[6]  Jack H. Lutz,et al.  The complexity and distribution of hard problems , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[7]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[8]  Osamu Watanabe,et al.  On polynomial time Turing and many-one completeness in PSPACE , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[9]  Jack H. Lutz Almost Everywhere High Nonuniform Complexity , 1992, J. Comput. Syst. Sci..

[10]  Alan L. Selman,et al.  Reductions on NP and P-Selective Sets , 1982, Theor. Comput. Sci..

[11]  Steven Homer Structural properties of nondeterministic complete sets , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[12]  Luc Longpré,et al.  Cook Reducibility is Faster than Karp Reduciblity in NP , 1990, J. Comput. Syst. Sci..

[13]  C. Schnorr Zufälligkeit und Wahrscheinlichkeit , 1971 .

[14]  Juris Hartmanis,et al.  On isomorphisms and density of NP and other complete sets , 1976, STOC '76.

[15]  Mihir Bellare,et al.  The Complexity of Decision Versus Search , 1991, SIAM J. Comput..

[16]  Paul Young,et al.  Some structural properties of polynomial reducibilities and sets in NP , 1983, STOC.

[17]  Jack H. Lutz,et al.  Measure, Stochasticity, and the Density of Hard Languages , 1993, STACS.

[18]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[19]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[20]  Elvira Mayordomo Almost Every Set in Exponential Time is P-bi-Immune , 1994, Theor. Comput. Sci..

[21]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[22]  Pekka Orponen,et al.  The Density and Complexity of Polynomial Cores for Intractable Sets , 1986, Inf. Control..

[23]  C. Schnorr Klassifikation der Zufallsgesetze nach Komplexität und Ordnung , 1970 .

[24]  Osamu Watanabe,et al.  On Polynomial-Time Bounded Truth-Table Reducibility of NP Sets to Sparse Sets , 1991, SIAM J. Comput..