The visual cortex as a crystal

[1]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  G. Arfken Mathematical Methods for Physicists , 1967 .

[4]  H. Klüver,et al.  Mescal, and Mechanisms of hallucinations , 1966 .

[5]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[6]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[7]  K Brauer,et al.  [Columnar organization of pyramidal cells of the visual cortex in the albino rat]. , 1975, Zeitschrift fur mikroskopisch-anatomische Forschung.

[8]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[10]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[11]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[14]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[15]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[16]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[18]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[20]  A. Leventhal The neural basis of visual function , 1991 .

[21]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  New planforms in systems of partial differential equations with Euclidean symmetry , 1995 .

[26]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[28]  A. Grinvald,et al.  Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex , 1995, The European journal of neuroscience.

[29]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996 .

[30]  J. B. Levitt,et al.  Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. , 1996, Cerebral cortex.

[31]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[32]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[33]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[34]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[35]  J. Lewis-Williams,et al.  The Shamans of Prehistory: Trance and Magic in the Painted Caves , 1998 .

[36]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[37]  L. P. O'Keefe,et al.  Functional organization of owl monkey lateral geniculate nucleus and visual cortex. , 1998, Journal of neurophysiology.

[38]  E. Callaway,et al.  Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1 , 1998, Visual Neuroscience.

[39]  R A Barrio,et al.  Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[41]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[43]  Martin Golubitsky,et al.  Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex , 2001 .

[44]  Paul C. Bressloff,et al.  Spontaneous pattern formation in primary visual cortex , 2002 .

[45]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[46]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Paul C Bressloff,et al.  Bloch waves, periodic feature maps, and cortical pattern formation. , 2002, Physical review letters.

[48]  B. Roerig,et al.  Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. , 2002, Cerebral cortex.

[49]  J. Cowan,et al.  SO3 symmetry breaking mechanism for orientation and spatial frequency tuning in the visual cortex. , 2002, Physical review letters.

[50]  Paul C. Bressloff,et al.  An Amplitude Equation Approach to Contextual Effects in Visual Cortex , 2002, Neural Computation.

[51]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[52]  J. Cowan,et al.  Erratum: A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn (Philosophical Transactions of the Royal Society of London Series B (October 29, 2003) 357 (1643-1667)) , 2003 .

[53]  J. Cowan,et al.  Correction for Bressloff and Cowan, A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn , 2003 .

[54]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.