Physics-based and statistical features for image forensics = Physikalische und statistische Merkmale in der Bildforensik

The objective of blind image forensics is to determine whether an image is authentic or captured with a particular device. In contrast to other security-related fields, like watermarking, it is assumed that no supporting pattern has been embedded into the image. Thus, the only available cues for blind image forensics are either a) based on inconsistencies in expected (general) scene and camera properties or b) artifacts from particular image processing operations that were performed as part of the manipulation. In this work, we focus on the detection of image manipulations. The contributions can be grouped in two categories: techniques that exploit the statistics of forgery artifacts and methods that identify inconsistencies in high-level scene information. The two categories complement each other. The statistical approaches can be applied to the majority of digital images in batch processing. If a particular, single image should be investigated, high-level features can be used for a detailed manual investigation. Besides providing an additional, complementary testing step for an image, high-level features are also more resilient to intentional disguise of the manipulation operation. Hence, the first part of this thesis focuses on methods for the detection of statistical artifacts introduced by the manipulation process. We propose improvements to the detection of so-called copy-move forgeries. We also develop a unified, extensively evaluated pipeline for copy-move forgery detection. To benchmark different detection features within this pipeline, we create a novel framework for the controlled creation of semi-realistic forgeries. Furthermore, if the image under investigation is stored in the JPEG format, we develop an effective scheme to expose inconsistencies in the JPEG coefficients. The second part of this work aims at the verification of scene properties. Within this class of methods, we propose a preprocessing approach to assess the consistency of the illumination conditions in the scene. This algorithm makes existing work applicable to a broader range of images. The main contribution in this part is a demonstration of how illuminant color estimation can be exploited as a forensic cue. In the course of developing this method, we extensively study color constancy algorithms, which is the classical research field for estimating the color of the illumination. In this context, we investigate extensions of classical color constancy algorithms to the new field of non-uniform illumination. As part of this analysis, we create a new, highly accurate ground truth dataset and propose a new algorithm for multi-illuminant estimation based on conditional random fields.

[1]  De Xu,et al.  Color constancy using 3D scene geometry , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  Alberto Del Bimbo,et al.  Ieee Transactions on Information Forensics and Security 1 a Sift-based Forensic Method for Copy-move Attack Detection and Transformation Recovery , 2022 .

[3]  Hany Farid,et al.  Exposing Digital Forgeries From JPEG Ghosts , 2009, IEEE Transactions on Information Forensics and Security.

[4]  Xuemin Wu,et al.  Image Splicing Detection Using Illuminant Color Inconsistency , 2011, 2011 Third International Conference on Multimedia Information Networking and Security.

[5]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[6]  C.G. Patil,et al.  Detection of Region Duplication Forgery in Digital Images Using Wavelets and Log-Polar Mapping , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[7]  N. Ohnishi,et al.  Exploring duplicated regions in natural images. , 2010, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[8]  Brian V. Funt,et al.  A data set for color research , 2002 .

[9]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[10]  Anderson Rocha,et al.  Eye specular highlights telltales for digital forensics: A machine learning approach , 2011, 2011 18th IEEE International Conference on Image Processing.

[11]  T M Lehmann,et al.  Color line search for illuminant estimation in real-world scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Md. Khayrul Bashar,et al.  Wavelet-Based Multiresolution Features for Detecting Duplications in Images , 2007, MVA.

[13]  Keigo Hirakawa,et al.  Color Constancy with Spatio-Spectral Statistics , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Hwei-Jen Lin,et al.  Fast copy-move forgery detection , 2009 .

[15]  K Barnard,et al.  Sensor sharpening for computational color constancy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Brian Funt,et al.  NON-DIAGONAL COLOR CORRECTION , 2003 .

[17]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Raimondo Schettini,et al.  Automatic color constancy algorithm selection and combination , 2010, Pattern Recognit..

[19]  Marc Ebner,et al.  Color constancy based on local space average color , 2009, Machine Vision and Applications.

[20]  Patrick Cavanagh,et al.  Perceiving Illumination Inconsistencies in Scenes , 2005, Perception.

[21]  Christian Riess,et al.  Automated Image Forgery Detection through Classification of JPEG Ghosts , 2012, DAGM/OAGM Symposium.

[22]  Kobus Barnard,et al.  Estimating the scene illumination chromaticity by using a neural network. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  G. Finlayson,et al.  A Re-evaluation of Colour Constancy Algorithm Performance , 2006 .

[24]  Ricardo da Silva Torres,et al.  Comparative study of global color and texture descriptors for web image retrieval , 2012, J. Vis. Commun. Image Represent..

[25]  Cordelia Schmid,et al.  Using High-Level Visual Information for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  Brian V. Funt,et al.  Experiments in Sensor Sharpening for Color Constancy , 1998, Color Imaging Conference.

[27]  Nasir D. Memon,et al.  Steganalysis using image quality metrics , 2003, IEEE Trans. Image Process..

[28]  Kobus Barnard,et al.  Improvements to Gamut Mapping Colour Constancy Algorithms , 2000, ECCV.

[29]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Heung-Yeung Shum,et al.  Radiometric calibration from a single image , 2004, CVPR 2004.

[31]  Raimondo Schettini,et al.  Improving Color Constancy Using Indoor–Outdoor Image Classification , 2008, IEEE Transactions on Image Processing.

[32]  Xu Bo,et al.  Image Copy-Move Forgery Detection Based on SURF , 2010, 2010 International Conference on Multimedia Information Networking and Security.

[33]  Alessandro Piva,et al.  Detection of Nonaligned Double JPEG Compression Based on Integer Periodicity Maps , 2012, IEEE Transactions on Information Forensics and Security.

[34]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.

[35]  Joost van de Weijer,et al.  Improving Color Constancy by Photometric Edge Weighting , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Wei Su,et al.  A generalized Benford's law for JPEG coefficients and its applications in image forensics , 2007, Electronic Imaging.

[37]  Christian Riess,et al.  A Study on Features for the Detection of Copy-Move Forgeries , 2010, Sicherheit.

[38]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[39]  Qiong Wu,et al.  A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[40]  Nasir D. Memon,et al.  Digital Single Lens Reflex Camera Identification From Traces of Sensor Dust , 2008, IEEE Transactions on Information Forensics and Security.

[41]  Christian Riess,et al.  Color constancy and non-uniform illumination: Can existing algorithms work? , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[42]  Gerald Schaefer,et al.  A combined physical and statistical approach to colour constancy , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[43]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[44]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[46]  Christian Riess,et al.  Physics-based illuminant color estimation as an image semantics clue , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[47]  Drew,et al.  Spectral sharpening with positivity , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[49]  Bruce A. Maxwell,et al.  A bi-illuminant dichromatic reflection model for understanding images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  XiaoBing Kang,et al.  Identifying Tampered Regions Using Singular Value Decomposition in Digital Image Forensics , 2008, 2008 International Conference on Computer Science and Software Engineering.

[51]  Larry S. Davis,et al.  Human detection using partial least squares analysis , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[52]  James F. O'Brien,et al.  Exposing photo manipulation with inconsistent reflections , 2012, TOGS.

[53]  Yu Zhang,et al.  Detection of Copy-Move Forgery in Digital Images Using SIFT Algorithm , 2008, 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

[54]  Rainer Böhme,et al.  The 'Dresden Image Database' for benchmarking digital image forensics , 2010, SAC '10.

[55]  Javier Vázquez Corral,et al.  Colour constancy in natural images through colour naming and sensor sharpening , 2014 .

[56]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[57]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[59]  Babak Mahdian,et al.  Detection of copy-move forgery using a method based on blur moment invariants. , 2007, Forensic science international.

[60]  Nasir D. Memon,et al.  Image manipulation detection with Binary Similarity Measures , 2005, 2005 13th European Signal Processing Conference.

[61]  Wang Zhi-quan,et al.  Fast and Robust Forensics for Image Region-duplication Forgery , 2009 .

[62]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[63]  Katsushi Ikeuchi,et al.  Consistent surface color for texturing large objects in outdoor scenes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[64]  Paul S. Fisher,et al.  Image quality measures and their performance , 1995, IEEE Trans. Commun..

[65]  Yan Ke,et al.  An efficient parts-based near-duplicate and sub-image retrieval system , 2004, MULTIMEDIA '04.

[66]  Atsuto Maki,et al.  Difference Sphere: An Approach to Near Light Source Estimation , 2004, CVPR.

[67]  Gerald Schaefer,et al.  Convex and non-convex illuminant constraints for dichromatic colour constancy , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[68]  Stephen Lin,et al.  Intrinsic image decomposition with non-local texture cues , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[70]  Hany Farid,et al.  Exposing digital forgeries from 3-D lighting environments , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[71]  Minglun Gong,et al.  An Efficient Match-based Duplication Detection Algorithm , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[72]  Jiwu Huang,et al.  A convolutive mixing model for shifted double JPEG compression with application to passive image authentication , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[73]  Jing Zhang,et al.  A new approach for detecting Copy-Move forgery in digital images , 2008, 2008 11th IEEE Singapore International Conference on Communication Systems.

[74]  Shenggen Ju,et al.  An Authentication Method for Copy Areas of Images , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[75]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  Raimondo Schettini,et al.  Color constancy using faces , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  S. Sons Detection of Region Duplication Forgery in Digital Images Using SURF , 2011 .

[78]  Joost van de Weijer,et al.  Physics-based edge evaluation for improved color constancy , 2009, CVPR.

[79]  Bin Li,et al.  Detecting doubly compressed JPEG images by using Mode Based First Digit Features , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.

[80]  Brian V. Funt,et al.  A comparison of computational color constancy Algorithms. II. Experiments with image data , 2002, IEEE Trans. Image Process..

[81]  Adhemar Bultheel,et al.  The Red-Black Wavelet Transform , 1997 .

[82]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[83]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[84]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[85]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[86]  Mary J. Bravo,et al.  Image forensic analyses that elude the human visual system , 2010, Electronic Imaging.

[87]  Laurence Meylan,et al.  High dynamic range image rendering with a retinex-based adaptive filter , 2006, IEEE Transactions on Image Processing.

[88]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Sebastiano Battiato,et al.  Digital forgery estimation into DCT domain: a critical analysis , 2009, MiFor '09.

[90]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[91]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Hany Farid,et al.  Exposing Digital Forgeries Through Specular Highlights on the Eye , 2007, Information Hiding.

[94]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[95]  Sang Wook Lee,et al.  Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation , 1996, International Journal of Computer Vision.

[96]  Arnold W. M. Smeulders,et al.  Color constancy from physical principles , 2003, Pattern Recognit. Lett..

[97]  Asoke K. Nandi,et al.  Exposing duplicated regions affected by reflection, rotation and scaling , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[98]  Xunyu Pan,et al.  Region Duplication Detection Using Image Feature Matching , 2010, IEEE Transactions on Information Forensics and Security.

[99]  Theo Gevers,et al.  Color Constancy for Multiple Light Sources , 2012, IEEE Transactions on Image Processing.

[100]  Stephen Lin,et al.  Multiple-cue illumination estimation in textured scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[101]  K. Ikeuchi,et al.  Color constancy through inverse-intensity chromaticity space. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[102]  Brian V. Funt,et al.  Color Constancy for Scenes with Varying Illumination , 1997, Comput. Vis. Image Underst..

[103]  Jessica J. Fridrich,et al.  Large scale test of sensor fingerprint camera identification , 2009, Electronic Imaging.

[104]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[105]  Ingemar J. Cox,et al.  Rotation, scale, and translation resilient watermarking for images , 2001, IEEE Trans. Image Process..

[106]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[107]  Chi-Keung Tang,et al.  Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis , 2009, Pattern Recognit..

[108]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[109]  Christian Riess,et al.  Ieee Transactions on Information Forensics and Security an Evaluation of Popular Copy-move Forgery Detection Approaches , 2022 .

[110]  Hany Farid,et al.  Exposing digital forgeries by detecting inconsistencies in lighting , 2005, MM&Sec '05.

[111]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[112]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[113]  Alin C. Popescu,et al.  Exposing digital forgeries in color filter array interpolated images , 2005, IEEE Transactions on Signal Processing.

[114]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[115]  Jan Lukás,et al.  Estimation of Primary Quantization Matrix in Double Compressed JPEG Images , 2003 .

[116]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[117]  Christian Riess,et al.  A common framework for ambient illumination in the dichromatic reflectance model , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[118]  Nasir D. Memon,et al.  An efficient and robust method for detecting copy-move forgery , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[119]  Jiwu Huang,et al.  Robust Detection of Region-Duplication Forgery in Digital Image , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[120]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[121]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[122]  P. Hanrahan,et al.  On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[123]  Der-Chyuan Lou,et al.  A semi-blind digital watermarking scheme based on singular value decomposition , 2006, Comput. Stand. Interfaces.

[124]  Christian Riess,et al.  Illuminant color estimation for real-world mixed-illuminant scenes , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[125]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Mark S. Drew,et al.  Sharpening from Shadows: Sensor Transforms for Removing Shadows using a Single Image , 2009, Color Imaging Conference.

[127]  Tian-Tsong Ng,et al.  Camera response function signature for digital forensics - Part II: Signature extraction , 2009, 2009 First IEEE International Workshop on Information Forensics and Security (WIFS).

[128]  Shoji Tominaga,et al.  Surface Identification Using the Dichromatic Reflection Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  Frédo Durand,et al.  Light mixture estimation for spatially varying white balance , 2008, ACM Trans. Graph..

[130]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[131]  Alin C. Popescu,et al.  Exposing Digital Forgeries by Detecting Duplicated Image Regions Exposing Digital Forgeries by Detecting Duplicated Image Regions , 2004 .

[132]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Tian-Tsong Ng,et al.  Camera response function signature for digital forensics - Part I: Theory and data selection , 2009, 2009 First IEEE International Workshop on Information Forensics and Security (WIFS).

[134]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[135]  Jessica Fridrich,et al.  Detection of Copy-Move Forgery in Digital Images , 2004 .

[136]  David Letscher,et al.  Detecting filtered cloning in digital images , 2007, MM&Sec.

[137]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[138]  Jitendra Malik,et al.  Color Constancy, Intrinsic Images, and Shape Estimation , 2012, ECCV.

[139]  Hongyuan Li,et al.  Detection of Image Region Duplication Forgery Using Model with Circle Block , 2009, 2009 International Conference on Multimedia Information Networking and Security.

[140]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[141]  H C Lee,et al.  Method for computing the scene-illuminant chromaticity from specular highlights. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[142]  Javier Toro,et al.  A Multilinear Constraint on Dichromatic Planes for Illumination Estimation , 2007, IEEE Transactions on Image Processing.

[143]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[144]  Fatos T. Yarman-Vural,et al.  SASI: a generic texture descriptor for image retrieval , 2003, Pattern Recognit..

[145]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[146]  Ee-Chien Chang,et al.  Detecting Digital Image Forgeries by Measuring Inconsistencies of Blocking Artifact , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[147]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[148]  Tom Minka,et al.  Bayesian Color Constancy with Non-Gaussian Models , 2003, NIPS.

[149]  Jingyuan Zhang,et al.  Source camera identification using Auto-White Balance approximation , 2011, 2011 International Conference on Computer Vision.

[150]  John J. McCann,et al.  Lessons Learned from Mondrians Applied to Real Images and Color Gamuts , 1999, CIC.

[151]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[152]  Jaeseok Kim,et al.  Natural hdr image tone mapping based on retinex , 2011, IEEE Transactions on Consumer Electronics.

[153]  Hany Farid,et al.  Exposing Digital Forgeries in Complex Lighting Environments , 2007, IEEE Transactions on Information Forensics and Security.

[154]  Heung-Kyu Lee,et al.  Detection of Copy-Rotate-Move Forgery Using Zernike Moments , 2010, Information Hiding.

[155]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[156]  Huang Yumin,et al.  A PHYSICAL APPROACH TO COLOR IMAGE UNDERSTANDING , 1991 .

[157]  Christian Riess,et al.  On rotation invariance in copy-move forgery detection , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[158]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[159]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[160]  Asoke K. Nandi,et al.  Passive forensic method for detecting duplicated regions affected by reflection, rotation and scaling , 2009, 2009 17th European Signal Processing Conference.

[161]  Urbano Nunes,et al.  Trainable classifier-fusion schemes: An application to pedestrian detection , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[162]  Ingeborg Tastl,et al.  Gamut Constrained Illuminant Estimation , 2006, International Journal of Computer Vision.

[163]  Takeo Kanade,et al.  The measurement of highlights in color images , 1988, International Journal of Computer Vision.

[164]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[165]  Peter V. Gehler,et al.  Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance , 2011, NIPS.

[166]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[167]  Christian Riess,et al.  Scene Illumination as an Indicator of Image Manipulation , 2010, Information Hiding.

[168]  Shih-Fu Chang,et al.  A Data Set of Authentic and Spliced Image Blocks , 2004 .

[169]  Graham D. Finlayson,et al.  Improving gamut mapping color constancy , 2000, IEEE Trans. Image Process..

[170]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[171]  Edward H. Adelson,et al.  Estimating Intrinsic Component Images using Non-Linear Regression , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[172]  J.M. Alvarez,et al.  Illuminant-invariant model-based road segmentation , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[173]  P.K. Bora,et al.  Illuminant colour based image forensics , 2008, TENCON 2008 - 2008 IEEE Region 10 Conference.