Sparse Deep Neural Network Graph Challenge

The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The proposed Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective of emerging sparse AI systems. The Sparse DNN Challenge is based on a mathematically well-defined DNN inference computation and can be implemented in any programming environment. Sparse DNN inference is amenable to both vertex-centric implementations and array-based implementations (e.g., using the GraphBLAS.org standard). The computations are simple enough that performance predictions can be made based on simple computing hardware models. The input data sets are derived from the MNIST handwritten letters. The surrounding I/O and verification provide the context for each sparse DNN inference that allows rigorous definition of both the input and the output. Furthermore, since the proposed sparse DNN challenge is scalable in both problem size and hardware, it can be used to measure and quantitatively compare a wide range of present day and future systems. Reference implementations have been implemented and their serial and parallel performance have been measured. Specifications, data, and software are publicly available at GraphChallenge.org.

[1]  B. G. Farley,et al.  Generalization of pattern recognition in a self-organizing system , 1955, AFIPS '55 (Western).

[2]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[3]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[4]  R. Venkatesh Babu,et al.  Data-free Parameter Pruning for Deep Neural Networks , 2015, BMVC.

[5]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[6]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[7]  Jean Scholtz,et al.  A reflection on seven years of the VAST challenge , 2012, BELIV '12.

[8]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[9]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  David A. Bader Designing Scalable Synthetic Compact Applications for Benchmarking High Productivity Computing Systems , 2006 .

[12]  Stephen L. Olivier,et al.  Kokkos/Qthreads task-parallel approach to linear algebra based graph analytics , 2016, 2016 IEEE High Performance Extreme Computing Conference (HPEC).

[13]  Andrew Kerr,et al.  GPU Performance Assessment with HPEC Challenge , 2008 .

[14]  Joseph P. Campbell,et al.  Testing with the YOHO CD-ROM voice verification corpus , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[15]  José E. Moreira,et al.  Enabling massive deep neural networks with the GraphBLAS , 2017, 2017 IEEE High Performance Extreme Computing Conference (HPEC).

[16]  Hassan Foroosh,et al.  Sparse Convolutional Neural Networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[18]  Jeremy Kepner Parallel MATLAB - for Multicore and Multinode Computers , 2009, Software, environments, tools.

[19]  Michael McGraw-Herdeg,et al.  Benchmarking the NVIDIA 8800 GTX with the CUDA Development Platform , 2007 .

[20]  William Song,et al.  Streaming graph challenge: Stochastic block partition , 2017, 2017 IEEE High Performance Extreme Computing Conference (HPEC).

[21]  Dong Yu,et al.  Exploiting sparseness in deep neural networks for large vocabulary speech recognition , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  O. G. Selfridge,et al.  Pattern Recognition and Modern Computers , 1899 .

[23]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[24]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[25]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[26]  Jeremy Kepner,et al.  Sparse Deep Neural Network Exact Solutions , 2018, 2018 IEEE High Performance extreme Computing Conference (HPEC).

[27]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[28]  Murray Campbell,et al.  Deep Blue , 2002, Artif. Intell..

[29]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[30]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[31]  Andrew Lavin,et al.  Fast Algorithms for Convolutional Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Mauro Bisson,et al.  A CUDA implementation of the pagerank pipeline benchmark , 2016, 2016 IEEE High Performance Extreme Computing Conference (HPEC).

[33]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[34]  Douglas A. Reynolds,et al.  Speaker Verification Using Adapted Gaussian Mixture Models , 2000, Digit. Signal Process..

[35]  Eric W. Brown,et al.  Making Watson fast , 2012, IBM J. Res. Dev..

[36]  Shaohuai Shi,et al.  Speeding up Convolutional Neural Networks By Exploiting the Sparsity of Rectifier Units , 2017, ArXiv.

[37]  Jeremy Kepner,et al.  PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[38]  Marc'Aurelio Ranzato,et al.  Sparse Feature Learning for Deep Belief Networks , 2007, NIPS.

[39]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[40]  Tinkara Toš,et al.  Graph Algorithms in the Language of Linear Algebra , 2012, Software, environments, tools.

[41]  John McCarthy,et al.  A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955 , 2006, AI Mag..

[42]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[43]  Jonathan W. Berry,et al.  A task-based linear algebra Building Blocks approach for scalable graph analytics , 2015, 2015 IEEE High Performance Extreme Computing Conference (HPEC).

[44]  Christos Faloutsos,et al.  Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication , 2005, PKDD.

[45]  Georges G. Grinstein,et al.  The VAST Challenge: history, scope, and outcomes: An introduction to the Special Issue , 2014, Inf. Vis..

[46]  José E. Moreira,et al.  IBM POWER9 and cognitive computing , 2018, IBM J. Res. Dev..

[47]  G. P. Dinneen Programming pattern recognition , 1955, AFIPS '55 (Western).

[48]  William Song,et al.  Static graph challenge: Subgraph isomorphism , 2017, 2017 IEEE High Performance Extreme Computing Conference (HPEC).

[49]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Jeremy Kepner,et al.  RadiX-Net: Structured Sparse Matrices for Deep Neural Networks , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[51]  Allen Newell,et al.  The chess machine: an example of dealing with a complex task by adaptation , 1955, AFIPS '55 (Western).

[52]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[53]  Willis H. Ware Introduction to Session on Learning Machines , 1899 .