Styles Of Programming In Neural Networks And Expert Systems

Neural networks and expert systems provide different ways to reduce the programming effort required to build complex systems. Adaptive neural networks are programmed merely by training them with examples. Rule-based expert system are developed incrementally merely by adding rules. Although neural networks seem best suited for low-level sensory processing and expert systems seem best suited for high-level symbolic processing, strikingly similar issues arise when these approaches are used in large-scale applications. Illustrative examples of such applications are presented and discussed.

[1]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[2]  H. D. Block The perceptron: a model for brain functioning. I , 1962 .

[3]  William van Melle,et al.  A Domain-Independent Production-Rule System for Consultation Programs , 1979, IJCAI.

[4]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  Tore Risch,et al.  A functional approach to integrating database and expert systems , 1988, CACM.

[7]  John Gaschnig,et al.  MODEL DESIGN IN THE PROSPECTOR CONSULTANT SYSTEM FOR MINERAL EXPLORATION , 1981 .

[8]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[9]  John Gaschnig,et al.  Preliminary Performance Analysis of the PROSPECTOR Consultant System for Mineral Exploration , 1979, IJCAI.

[10]  田中 穂積 E.H.Shortliffe 著, "Computer-Based Medical Consultations : MYCIN", American Elsevier, A4判, 264ぺージ, \10,080, 1976 , 1978 .

[11]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[12]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[13]  J. H. Munson,et al.  Experiments in the recognition of hand-printed text, part I: character recognition , 1968, AFIPS '68 (Fall, part II).

[14]  Tore Risch,et al.  Syntel Using a Functional Language for Financial Risk Assessment , 1987, IEEE Expert.

[15]  R. O. Duda,et al.  PROSPECTOR—A computer-based consultation system for mineral exploration , 1978 .

[16]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[17]  Richard F. Lyon,et al.  A computational model of filtering, detection, and compression in the cochlea , 1982, ICASSP.

[18]  Mary Ellen Prince Expert system technology , 1987 .

[19]  R. Duda,et al.  Expert Systems Research. , 1983, Science.

[20]  Peter E. Hart,et al.  GRAPHICAL-DATA-PROCESSING RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION , 1964 .

[21]  Tom DeMarco,et al.  Structured Analysis and System Specification , 1978 .

[22]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[23]  Peter G. Politakis,et al.  Empirical analysis for expert systems , 1985 .

[24]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[25]  M. Arbib,et al.  Vision, brain, and cooperative computation , 1990 .

[26]  Randall Davis,et al.  An overview of production systems , 1975 .

[27]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[28]  T. T. Soong,et al.  Book Reviews : System Dynamics: K. Ogata Prentice-Hall, Englewood Cliffs, New Jersey, 1978 , 1980 .

[29]  David H. Sharp,et al.  Neural nets and artificial intelligence , 1989 .

[30]  Richard O. Duda,et al.  Experiments in the recognition of hand-printed text, part II: context analysis , 1968, AFIPS '68 (Fall, part II).

[31]  R. Duda,et al.  Recognition of a Hidden Mineral Deposit by an Artificial Intelligence Program , 1982, Science.