MT neurons in the macaque exhibited two types of bimodal direction tuning as predicted by a model for visual motion detection

[1]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[2]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[3]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[4]  P. Hammond Directional tuning of complex cells in area 17 of the feline visual cortex , 1978, The Journal of physiology.

[5]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[6]  P. Hammond,et al.  Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion , 1980, Neuroscience Letters.

[7]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[9]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[10]  A. T. Smith,et al.  Directional tuning interactions between moving oriented and textured stimuli in complex cells of feline striate cortex. , 1983, The Journal of physiology.

[11]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[12]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[13]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[14]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[16]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[19]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[20]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[21]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[22]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[23]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[24]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[25]  R. L. de Valois,et al.  Responses of simple and complex cells to random dot patterns: a quantitative comparison. , 1988, Journal of neurophysiology.

[26]  A. L. Humphrey,et al.  Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[27]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[28]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[29]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[30]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[31]  Takao Sato,et al.  Motion perception model with interaction between spatial frequency channels , 1991, Systems and Computers in Japan.

[32]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[33]  G. Orban,et al.  Speed and direction selectivity of macaque middle temporal neurons. , 1993, Journal of neurophysiology.

[34]  J Zhang,et al.  On the directional selectivity of cells in the visual cortex to drifting dot patterns , 1994, Visual Neuroscience.

[35]  Eero P. Simoncelli,et al.  Testing and refining a computational model of neural responses in area MT , 1996 .

[36]  Hiroaki Okamoto,et al.  A cell model for the detection of local image motion on the magnocellular pathway of the visual cortex , 1996, Vision Research.

[37]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.