A proximal DC approach for quadratic assignment problem

In this paper, we show that the quadratic assignment problem (QAP) can be reformulated to an equivalent rank constrained doubly nonnegative (DNN) problem. Under the framework of the difference of convex functions (DC) approach, a semi-proximal DC algorithm is proposed for solving the relaxation of the rank constrained DNN problem whose subproblems can be solved by the semi-proximal augmented Lagrangian method. We show that the generated sequence converges to a stationary point of the corresponding DC problem, which is feasible to the rank constrained DNN problem under some suitable assumptions. Moreover, numerical experiments demonstrate that for most QAP instances, the proposed approach can find the global optimal solutions efficiently, and for others, the proposed algorithm is able to provide good feasible solutions in a reasonable time.

[1]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[2]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[3]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[4]  Franz Rendl,et al.  A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..

[5]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[6]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[7]  Akiko Takeda,et al.  A refined convergence analysis of pDCA$_e$ with applications to simultaneous sparse recovery and outlier detection , 2018 .

[8]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[9]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[10]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[11]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[12]  Kim-Chuan Toh,et al.  SDPNAL$$+$$+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints , 2014, Math. Program. Comput..

[13]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[14]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[15]  Kim-Chuan Toh,et al.  SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0) , 2017, Optim. Methods Softw..

[16]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[17]  Jeffrey Shallit,et al.  The Computational Complexity of Some Problems of Linear Algebra , 1996, J. Comput. Syst. Sci..

[18]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[19]  Hoai An Le Thi,et al.  DC programming and DCA: thirty years of developments , 2018, Mathematical Programming.

[20]  Edouard Pauwels,et al.  Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs , 2014, Math. Oper. Res..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Akiko Takeda,et al.  A refined convergence analysis of pDCAe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pDCA}_{e}$$\end{document , 2018, Computational Optimization and Applications.

[23]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[24]  Akiko Yoshise,et al.  On optimization over the doubly nonnegative cone , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[25]  Shaohua Pan,et al.  Error bounds for rank constrained optimization problems and applications , 2016, Oper. Res. Lett..

[26]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[27]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[28]  A. D. Ioffe,et al.  An Invitation to Tame Optimization , 2008, SIAM J. Optim..

[29]  Houduo Qi,et al.  A Sequential Semismooth Newton Method for the Nearest Low-rank Correlation Matrix Problem , 2011, SIAM J. Optim..

[30]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[31]  R. Burkard Quadratic Assignment Problems , 1984 .

[32]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[33]  Taoran Fu On Doubly Positive Semidefinite Programming Relaxations , 2018, Journal of Computational Mathematics.

[34]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[35]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[36]  M. Todd Semidefinite optimization , 2001, Acta Numerica.

[37]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[38]  Kim-Chuan Toh,et al.  A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems , 2016, Math. Program..

[39]  Franz Rendl,et al.  Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..

[40]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[41]  Defeng Sun,et al.  A Majorized Penalty Approach for Calibrating Rank Constrained Correlation Matrix Problems , 2010 .

[42]  Zvi Drezner,et al.  Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods , 2005, Ann. Oper. Res..

[43]  Le Thi Hoai An,et al.  DC programming and DCA: thirty years of developments , 2018, Math. Program..

[44]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[45]  Kurt M. Anstreicher,et al.  Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..

[46]  Franz Rendl,et al.  Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..

[47]  Le Thi Hoai An,et al.  Exact penalty and error bounds in DC programming , 2012, J. Glob. Optim..

[48]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.