A proximal DC approach for quadratic assignment problem
暂无分享,去创建一个
[1] Monique Laurent,et al. Semidefinite optimization , 2019, Graphs and Geometry.
[2] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[3] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[4] Franz Rendl,et al. A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..
[5] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[6] Franz Rendl,et al. QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..
[7] Akiko Takeda,et al. A refined convergence analysis of pDCA$_e$ with applications to simultaneous sparse recovery and outlier detection , 2018 .
[8] Marc Teboulle,et al. Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.
[9] T. Motzkin,et al. Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.
[10] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[11] Kim-Chuan Toh,et al. A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..
[12] Kim-Chuan Toh,et al. SDPNAL$$+$$+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints , 2014, Math. Program. Comput..
[13] Henry Wolkowicz,et al. Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..
[14] Le Thi Hoai An,et al. A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..
[15] Kim-Chuan Toh,et al. SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0) , 2017, Optim. Methods Softw..
[16] Katta G. Murty,et al. Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..
[17] Jeffrey Shallit,et al. The Computational Complexity of Some Problems of Linear Algebra , 1996, J. Comput. Syst. Sci..
[18] Hédy Attouch,et al. Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..
[19] Hoai An Le Thi,et al. DC programming and DCA: thirty years of developments , 2018, Mathematical Programming.
[20] Edouard Pauwels,et al. Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs , 2014, Math. Oper. Res..
[21] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[22] Akiko Takeda,et al. A refined convergence analysis of pDCAe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pDCA}_{e}$$\end{document , 2018, Computational Optimization and Applications.
[23] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[24] Akiko Yoshise,et al. On optimization over the doubly nonnegative cone , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.
[25] Shaohua Pan,et al. Error bounds for rank constrained optimization problems and applications , 2016, Oper. Res. Lett..
[26] T. Koopmans,et al. Assignment Problems and the Location of Economic Activities , 1957 .
[27] Teofilo F. Gonzalez,et al. P-Complete Approximation Problems , 1976, J. ACM.
[28] A. D. Ioffe,et al. An Invitation to Tame Optimization , 2008, SIAM J. Optim..
[29] Houduo Qi,et al. A Sequential Semismooth Newton Method for the Nearest Low-rank Correlation Matrix Problem , 2011, SIAM J. Optim..
[30] Adrian S. Lewis,et al. Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..
[31] R. Burkard. Quadratic Assignment Problems , 1984 .
[32] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[33] Taoran Fu. On Doubly Positive Semidefinite Programming Relaxations , 2018, Journal of Computational Mathematics.
[34] Henry Wolkowicz,et al. On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..
[35] Samuel Burer,et al. On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..
[36] M. Todd. Semidefinite optimization , 2001, Acta Numerica.
[37] Adrian S. Lewis,et al. The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..
[38] Kim-Chuan Toh,et al. A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems , 2016, Math. Program..
[39] Franz Rendl,et al. Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..
[40] R. Rockafellar,et al. Implicit Functions and Solution Mappings , 2009 .
[41] Defeng Sun,et al. A Majorized Penalty Approach for Calibrating Rank Constrained Correlation Matrix Problems , 2010 .
[42] Zvi Drezner,et al. Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods , 2005, Ann. Oper. Res..
[43] Le Thi Hoai An,et al. DC programming and DCA: thirty years of developments , 2018, Math. Program..
[44] Hédy Attouch,et al. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..
[45] Kurt M. Anstreicher,et al. Recent advances in the solution of quadratic assignment problems , 2003, Math. Program..
[46] Franz Rendl,et al. Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..
[47] Le Thi Hoai An,et al. Exact penalty and error bounds in DC programming , 2012, J. Glob. Optim..
[48] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.