Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey

We present a survey on maritime object detection and tracking approaches, which are essential for the development of a navigational system for autonomous ships. The electro-optical (EO) sensor considered here is a video camera that operates in the visible or the infrared spectra, which conventionally complements radar and sonar for situational awareness at sea and has demonstrated its effectiveness over the last few years. This paper provides a comprehensive overview of various approaches of video processing for object detection and tracking in the maritime environment. We follow an approach-based taxonomy wherein the advantages and limitations of each approach are compared. The object detection system consists of the following modules: horizon detection, static background subtraction, and foreground segmentation. Each of these has been studied extensively in maritime situations and has been shown to be challenging due to the presence of background motion especially due to waves and wakes. The key processes involved in object tracking include video frame registration, dynamic background subtraction, and the object tracking algorithm itself. The challenges for robust tracking arise due to camera motion, dynamic background, and low contrast of tracked object, possibly due to environmental degradation. The survey also discusses multisensor approaches and commercial maritime systems that use EO sensors. The survey also highlights methods from computer vision research, which hold promise to perform well in maritime EO data processing. Performance of several maritime and computer vision techniques is evaluated on Singapore Maritime Dataset.

[1]  Thierry Bouwmans,et al.  Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[2]  Steven J. Nowlan,et al.  Soft competitive adaptation: neural network learning algorithms based on fitting statistical mixtures , 1991 .

[3]  David Casasent,et al.  Detection filters and algorithm fusion for ATR , 1997, IEEE Trans. Image Process..

[4]  Meng Hwa Er,et al.  Max-mean and max-median filters for detection of small targets , 1999, Optics & Photonics.

[5]  Jules-Raymond Tapamo,et al.  Detection and tracking of moving objects in a maritime environment using level set with shape priors , 2013, EURASIP J. Image Video Process..

[6]  Andrew Blake,et al.  An HMM-Based Segmentation Method for Traffic Monitoring Movies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Henri Bouma,et al.  Discriminating small extended targets at sea from clutter and other classes of boats in infrared and visual light imagery , 2008, SPIE Defense + Commercial Sensing.

[8]  Tao Wang,et al.  Segmentation of infrared image using fuzzy thresholding via local region analysis , 2012, 2012 5th International Congress on Image and Signal Processing.

[9]  Junzhou Huang,et al.  Learning with dynamic group sparsity , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Andres Huertas,et al.  Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation , 2006 .

[11]  Michele Fiorini,et al.  Clean Mobility and Intelligent Transport Systems , 2015 .

[12]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Shahriar Negahdaripour,et al.  3-D object modeling from 2-D occluding contour correspondences by opti-acoustic stereo imaging , 2015, Comput. Vis. Image Underst..

[14]  K. D. Ward,et al.  Maritime surveillance radar-Part 2: Detection performance prediction in sea clutter , 2004 .

[15]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[16]  Guillaume-Alexandre Bilodeau,et al.  Improving background subtraction using Local Binary Similarity Patterns , 2014, IEEE Winter Conference on Applications of Computer Vision.

[17]  M. Teal,et al.  Target identification in a complex maritime scene , 1999 .

[18]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[19]  Les Elkins,et al.  The Autonomous Maritime Navigation (AMN) project: Field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehicles , 2010, J. Field Robotics.

[20]  Zhou Wang,et al.  Video saliency incorporating spatiotemporal cues and uncertainty weighting , 2013, ICME.

[21]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Sergiy Fefilatyev,et al.  Algorithms for Visual Maritime Surveillance with Rapidly Moving Camera , 2012 .

[23]  Ding Yuan,et al.  Real-time automatic small infrared target detection using local spectral filtering in the frequency , 2014, Photonics Asia.

[24]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[25]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[26]  Lawrence O. Hall,et al.  Horizon Detection Using Machine Learning Techniques , 2006, 2006 5th International Conference on Machine Learning and Applications (ICMLA'06).

[27]  F. Robert-Inacio,et al.  Multispectral Target Detection and Tracking for Seaport Video Surveillance , 2007 .

[28]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[29]  Wu-Chih Hu,et al.  Robust real-time ship detection and tracking for visual surveillance of cage aquaculture , 2011, J. Vis. Commun. Image Represent..

[30]  Wei Wang,et al.  A multiple object tracking method using Kalman filter , 2010, The 2010 IEEE International Conference on Information and Automation.

[31]  Charles V. Stewart,et al.  Robust Computer Vision: An Interdisciplinary Challenge , 2000, Comput. Vis. Image Underst..

[32]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  D. Prasad Survey of The Problem of Object Detection In Real Images , 2012 .

[34]  Hasan Sajid,et al.  Background subtraction for static & moving camera , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[35]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[36]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Luca Iocchi,et al.  Argos - a Video Surveillance System for boat Traffic Monitoring in Venice , 2009, Int. J. Pattern Recognit. Artif. Intell..

[38]  Nuno Vasconcelos,et al.  Layered Dynamic Textures , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  C. Baker,et al.  Maritime surveillance radar Part 1 : Radar scattering from the ocean surface , 1990 .

[40]  Deepu Rajan,et al.  Challenges in video based object detection in maritime scenario using computer vision , 2016, ArXiv.

[41]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[42]  Kalyan Moy Gupta,et al.  Adaptive maritime video surveillance , 2009, Defense + Commercial Sensing.

[43]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[45]  Deepu Rajan,et al.  MuSCoWERT: multi-scale consistence of weighted edge Radon transform for horizon detection in maritime images. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  Wen Hu,et al.  Efficient background subtraction for real-time tracking in embedded camera networks , 2012, SenSys '12.

[47]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[48]  John K. Horne,et al.  Acoustic approaches to remote species identification: a review , 2000 .

[49]  Hasan Sajid,et al.  Background subtraction under sudden illumination change , 2014, 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP).

[50]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[51]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[52]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Jason J. Ford,et al.  Evaluation of Maritime Vision Techniques for Aerial Search of Humans in Maritime Environments , 2008, 2008 Digital Image Computing: Techniques and Applications.

[54]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[55]  Mari Ostendorf,et al.  HMM topology design using maximum likelihood successive state splitting , 1997, Comput. Speech Lang..

[56]  Gang Sun,et al.  Research on infrared ship detection method in sea-sky background , 2013, Other Conferences.

[57]  Liming Zhang,et al.  Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Piet B. W. Schwering,et al.  Automatic detection of small surface targets with electro-optical sensors in a harbor environment , 2008, Security + Defence.

[59]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[60]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[61]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[62]  Olaf Munkelt,et al.  Adaptive Background Estimation and Foreground Detection using Kalman-Filtering , 1995 .

[63]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[64]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Krispijn A. Scholte,et al.  Polynomial background estimation using visible light video streams for robust automatic detection in a maritime environment , 2009, Security + Defence.

[66]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[67]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[68]  Peter G. Ifju,et al.  Vision-guided flight stability and control for micro air vehicles , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  Lyudmila Mihaylova,et al.  Extended Object Tracking Using Monte Carlo Methods , 2008, IEEE Transactions on Signal Processing.

[70]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[71]  Dmitry B. Goldgof,et al.  Tracking Ships from Fast Moving Camera through Image Registration , 2010, 2010 20th International Conference on Pattern Recognition.

[72]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Hui Zhou,et al.  A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Du-Ming Tsai,et al.  Independent Component Analysis-Based Background Subtraction for Indoor Surveillance , 2009, IEEE Transactions on Image Processing.

[75]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[76]  Jian-Huang Lai,et al.  Complex Background Subtraction by Pursuing Dynamic Spatio-Temporal Models , 2014, IEEE Transactions on Image Processing.

[77]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[78]  Piet B. W. Schwering,et al.  Persistent maritime surveillance using multi-sensor feature association and classification , 2012, Defense + Commercial Sensing.

[79]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[81]  Piet B. W. Schwering,et al.  Ship recognition for improved persistent tracking with descriptor localization and compact representations , 2014, Security and Defence.

[82]  Han Wang,et al.  Stereovision based obstacle detection system for unmanned surface vehicle , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[83]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[84]  H. C. Chan,et al.  An integrated maritime surveillance system based on high-frequency surface-wave radars. 2. Operational status and system performance , 2001 .

[85]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[86]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[87]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[88]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[89]  Xiuzhi Li,et al.  Moving object detection in dynamic scenes based on optical flow and superpixels , 2015, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[90]  Vinod Nair,et al.  An unsupervised, online learning framework for moving object detection , 2004, CVPR 2004.

[91]  Marko Heikkilä,et al.  A Texture-based Method for Detecting Moving Objects , 2004, BMVC.

[92]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[93]  Joachim M. Buhmann,et al.  Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.

[94]  Piet B. W. Schwering,et al.  EO system concepts in the littoral , 2007, SPIE Defense + Commercial Sensing.

[95]  Luca Iocchi,et al.  Background modeling in the maritime domain , 2013, Machine Vision and Applications.

[96]  Jinwhan Kim,et al.  Passive target tracking of marine traffic ships using onboard monocular camera for unmanned surface vessel , 2015 .

[97]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[98]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[99]  R. Vidal A TUTORIAL ON SUBSPACE CLUSTERING , 2010 .

[100]  P. Wayne Power,et al.  Understanding Background Mixture Models for Foreground Segmentation , 2002 .

[101]  Mohan M. Trivedi,et al.  Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis , 2013, IEEE Transactions on Intelligent Transportation Systems.

[102]  Roberto Tron RenVidal A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .

[103]  Julien Mairal,et al.  Network Flow Algorithms for Structured Sparsity , 2010, NIPS.

[104]  Thomas Brox,et al.  Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions , 2011, 2011 International Conference on Computer Vision.

[105]  Giuseppe Satalino,et al.  Automatic target recognition for naval traffic control using neural networks , 1998, Image Vis. Comput..

[106]  Yong Wang,et al.  Aquatic Debris Detection Using Embedded Camera Sensors , 2015, Sensors.

[107]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[108]  Guillermo Sapiro,et al.  Morphing Active Contours , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Dmitry B. Goldgof,et al.  Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system , 2012 .

[110]  W. Eric L. Grimson,et al.  Using adaptive tracking to classify and monitor activities in a site , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[111]  Antoni B. Chan,et al.  Joint Motion Segmentation and Background Estimation in Dynamic Scenes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[112]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[113]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  Touradj Ebrahimi,et al.  Video object extraction based on adaptive background and statistical change detection , 2000, IS&T/SPIE Electronic Imaging.

[115]  M. K. Teal,et al.  Nautical Scene Segmentation Using Variable Size Image Windows and Feature Space Reclustering , 2000, ECCV.

[116]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.

[117]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[118]  Piet B. W. Schwering,et al.  Recognition of ships for long-term tracking , 2014, Defense + Security Symposium.

[119]  Nuno Vasconcelos,et al.  Modeling, Clustering, and Segmenting Video with Mixtures of Dynamic Textures , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Wonjun Kim,et al.  Spatiotemporal Saliency Detection and Its Applications in Static and Dynamic Scenes , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[121]  M. Irani,et al.  Spatio-Temporal Alignment of Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Xiaochun Cao,et al.  Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background , 2016, IEEE Transactions on Cybernetics.

[123]  Scott,et al.  Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles , 1999 .

[124]  Yunde Jia,et al.  Spatio-temporal patches for night background modeling by subspace learning , 2008, 2008 19th International Conference on Pattern Recognition.

[125]  Hai Wei,et al.  Automated intelligent video surveillance system for ships , 2009, Defense + Commercial Sensing.

[126]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[127]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[128]  Qian Zhang,et al.  A Biological Hierarchical Model Based Underwater Moving Object Detection , 2014, Comput. Math. Methods Medicine.

[129]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[130]  Fugen Zhou,et al.  Infrared small target enhancement by using sequential top-hat filters , 2014, Other Conferences.

[131]  C. Baker,et al.  Maritime surveillance radar. II. Detection performance prediction in sea clutter , 1990 .

[132]  Matti Pietikäinen,et al.  Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[133]  Peter G. Ifju,et al.  Vision-guided flight stability and control for micro air vehicles , 2003, Adv. Robotics.

[134]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  Thomas S. Huang,et al.  Robust estimation of foreground in surveillance videos by sparse error estimation , 2008, 2008 19th International Conference on Pattern Recognition.

[136]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[137]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[138]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[139]  Haifeng Chen,et al.  Robust Computer Vision through Kernel Density Estimation , 2002, ECCV.

[140]  Saburo Okada,et al.  Machine vision for detection of the rescue target in the marine casualty , 1994, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics.

[141]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[142]  Smith,et al.  Identification and tracking of maritime objects in near-infrared image sequences for collision avoidance , 1999 .

[143]  Tianxu Zhang,et al.  Clutter-adaptive infrared small target detection in infrared maritime scenarios , 2011 .

[144]  Michael G. Ross,et al.  Exploiting texture-motion duality in optical flow and image segmentation , 2000 .

[145]  Pascal Vasseur,et al.  Omnidirectional vision on UAV for attitude computation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[146]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[147]  Yang Wang,et al.  A dynamic conditional random field model for foreground and shadow segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Thomas Porathe,et al.  SITUATION AWARENESS IN REMOTE CONTROL CENTRES FOR UNMANNED SHIPS , 2014 .

[149]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[150]  Yufeng Zheng,et al.  Multisensory data exploitation using advanced image fusion and adaptive colorization , 2008, SPIE Defense + Commercial Sensing.

[151]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[152]  Bir Bhanu,et al.  Model-based segmentation of FLIR images , 1990 .

[153]  Svetha Venkatesh,et al.  Detection of Dynamic Background Due to Swaying Movements From Motion Features , 2015, IEEE Transactions on Image Processing.

[154]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[155]  John Barnett,et al.  Statistical Analysis Of Median Subtraction Filtering With Application To Point Target Detection In Infrared Backgrounds , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[156]  Zhijun Yao Small target detection under the sea using multi-scale spectral residual and maximum symmetric surround , 2013, 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[157]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[158]  Jyh-Yeong Chang,et al.  Applying fuzzy logic in the modified single‐layer perceptron image segmentation network , 2000 .

[159]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[160]  Guoliang Xing,et al.  Aquatic debris monitoring using smartphone-based robotic sensors , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[161]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[162]  Larry S. Davis,et al.  Background modeling and subtraction by codebook construction , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[163]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[164]  Zhong Zhang,et al.  Real-world multisensor image alignment using edge focusing and Hausdorff distances , 1999, Defense, Security, and Sensing.

[165]  Edel O'Connor,et al.  A visual sensing platform for creating a smarter multi-modal marine monitoring network , 2012, MAED '12.

[166]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[167]  Huiyu Zhou,et al.  Region-based Mixture of Gaussians modelling for foreground detection in dynamic scenes , 2015, Pattern Recognit..

[168]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[169]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Klamer Schutte,et al.  Automatic classification of ships from infrared (FLIR) images , 1999, Defense, Security, and Sensing.

[171]  菲利浦·瓦魁特 Anti-collision warning system for marine vehicle and anti-collision analysis method , 2005 .

[172]  Hui Li,et al.  Segmentation of FLIR Images Based on Background Suppression , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[173]  Rongrong Ji,et al.  Background subtraction driven seeds selection for moving objects segmentation and matting , 2013, Neurocomputing.

[174]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[175]  Erfu Yang,et al.  A Biologically Inspired Vision-Based Approach for Detecting Multiple Moving Objects in Complex Outdoor Scenes , 2015, Cognitive Computation.

[176]  Roy Edgar Hansen,et al.  Synthetic aperture sonar technology review , 2013 .

[177]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[178]  D. Koller,et al.  Towards robust automatic traffic scene analysis in real-time , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[179]  Tianxu Zhang,et al.  Segmentation of FLIR images by target enhancement and image model , 1998, Other Conferences.

[180]  Zoran Duric,et al.  Using histograms to detect and track objects in color video , 2001, Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time Varying Imagery.

[181]  Jitendra Malik,et al.  Robust Multiple Car Tracking with Occlusion Reasoning , 1994, ECCV.

[182]  Luca Iocchi,et al.  Automatic Maritime Surveillance with Visual Target Detection , 2011 .

[183]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[184]  Hiok Chai Quek,et al.  A novel framework for making dominant point detection methods non-parametric , 2012, Image Vis. Comput..

[185]  Thierry Bouwmans,et al.  Foreground Detection via Robust Low Rank Matrix Decomposition Including Spatio-Temporal Constraint , 2012, ACCV Workshops.

[186]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[187]  Manuel Rosa-Zurera,et al.  Ship detection by different data selection templates and multilayer perceptrons from incoherent maritime radar data , 2011 .

[188]  Jian Liu,et al.  Small infrared target fusion detection based on support vector machines in the wavelet domain , 2006 .

[189]  Hugo Guterman,et al.  NLEBS: automatic target detection using a unique nonlinear-enhancement-based system in IR images , 2000 .

[190]  Thomas Brox,et al.  Variational Motion Segmentation with Level Sets , 2006, ECCV.

[191]  Zhao-Ying Zhou,et al.  Vision-based horizon extraction for micro air vehicle flight control , 2005, IEEE Trans. Instrum. Meas..

[192]  C. C. Chen Attenuation of Electromagnetic Radiation by Haze, Fog, Clouds, and Rain , 1975 .

[193]  Michael C. Nechyba,et al.  A Vision System for Horizon Tracking and Object Recognition for Micro Air Vehicles , 2004 .

[194]  Tianxu Zhang,et al.  Method for building recognition from FLIR images , 2011, IEEE Aerospace and Electronic Systems Magazine.

[195]  Arne Theil,et al.  Detection and classification of infrared decoys and small targets in a sea background , 2000, Defense, Security, and Sensing.

[196]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[197]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[198]  Robin N. Strickland,et al.  Wavelet transform methods for object detection and recovery , 1997, IEEE Trans. Image Process..

[199]  Deepu Rajan,et al.  MSCM-LiFe: Multi-scale cross modal linear feature for horizon detection in maritime images , 2016, 2016 IEEE Region 10 Conference (TENCON).

[200]  Daniele Nardi,et al.  Integrated Visual Information for Maritime Surveillance , 2015 .

[201]  Xavier Maldague,et al.  Outdoor infrared video surveillance: A novel dynamic technique for the subtraction of a changing background of IR images , 2007 .

[202]  Vitaly Ablavsky,et al.  Background models for tracking objects in water , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[203]  L. Wixson Detecting Salient Motion by Accumulating Directionally-Consistent Flow , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[204]  Ran Xin,et al.  Target detection of maritime search and rescue: Saliency accumulation method , 2012, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery.

[205]  Borko Furht,et al.  A Hybrid Color-Based Foreground Object Detection Method for Automated Marine Surveillance , 2005, ACIVS.

[206]  Michael C. Nechyba,et al.  A vision system for intelligent mission profiles of micro air vehicles , 2004, IEEE Transactions on Vehicular Technology.

[207]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[208]  Xin Liu,et al.  Background subtraction based on low-rank and structured sparse decomposition. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[209]  Samuel Kosolapov,et al.  Horizon Line Detection in Marine Images: Which Method to Choose? , 2013 .

[210]  Helmut E. Bez,et al.  A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking , 2005, Pattern Recognit. Lett..

[211]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[212]  Azriel Rosenfeld,et al.  Detection and location of people in video images using adaptive fusion of color and edge information , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[213]  Oren Gal,et al.  Automatic Obstacle Detection for USV’s Navigation Using Vision Sensors , 2011 .

[214]  Xiaochun Cao,et al.  Motion saliency detection using low-rank and sparse decomposition , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[215]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[216]  M.P. Hayes,et al.  Synthetic Aperture Sonar: A Review of Current Status , 2009, IEEE Journal of Oceanic Engineering.

[217]  Jun Chen,et al.  Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation , 2014 .

[218]  Zygmunt L. Szpak,et al.  Maritime surveillance: Tracking ships inside a dynamic background using a fast level-set , 2011, Expert Syst. Appl..